
Tower on a planet
shader demo

Christopher Bläsius
august 2009

www.swollen-eyeballs.org

Index
 1 Creation of the tower

 1.1 filling a density map
 1.2 calculating ambient occlusion term
 1.3 summing up numbers of polygons
 1.4 vertex creation
 1.5 create vertex normals
 1.6 additional work on cpu

 2 Rendering
 2.1 mesh deformations
 2.2 atmospheric scattering
 2.3 simple clouds
 2.4 texturing the tower

http://www.swollen-eyeballs.org/

1 Creation of the tower

1.1 filling a density map
The triangle mesh of the tower is build by using a
density map. Basically you can think of it as a big 3d
grid (256x256x2560). Each point in this map specifies if
there is material (a positive value) or just air (a
negative value).

To keep memory consumptions low we split this grid
into smaller parts, 32x32x32 to be precise, this gives us
8x8x80=5120 smaller grids which get
calculated separately.

To avoid shading errors we let those
smaller maps overlap each other by
25%, this gives us grids of 64x64x64
voxels.

These maps get internally represented as big 2d textures (4096x64
pixels, floating point format).

This texture get filled by a shader which uses a 3d noise texture and the
world position to create density values. To get a 3d position out of the 2d
position on the texture a simple formula is used:

pos.y = texture.y + map.y
pos.z = floor(texture.x/64) + map.z
pos.x = texture%64 + map.x

1.2 calculating ambient occlusion term
To calculate a simple ambient occlusion
term we read the density map 128 times in
random directions around every position. If
the value is positive it blocks lights, means
the ambient occlusion term gets smaller.
This is done by a shader which writes the
results out to a 1024x32 pixel texture (the
overlapping parts gets deleted). As you can
imagine this doesn't give very accurate
values, thin walls are often completely

ignored by the algorithm, although they also should block light. This
could be solve by shooting rays instead, means reading the density map
along a ray and stop if the ray hits a wall. I've tested this, but its to
damn slow on a Geforce6 which doesn't have effective conditional branch
support.

1.3 summing up polygons
On this texture we also save the index of the marching cube (there are
256 different cube types) and the number of polygons we need to
construct the mesh. (i won't explain the marching cube algorithm here,
there are pretty good explanations on the web).
After this we construct a so called HistoPyramid. We sum up the number
of polygons until we have a 1x1pixel texture which holds the total
number of polygons we need for the complete sub map.

For this we create 4 extra textures, we need those for calculating the
vertex positions later.

1.4 vertex creation
Each polygon is defined by 3 vertexes. The position of each vertex gets
calculated by a shader writing to a 256x512px texture. Each pixel on
that texture represents a vertex. Using the intermediate textures we
created a step earlier we can find out to which marching cube a vertex
belongs, means we can calculate the 3d world position of the vertex.

0 0 1 0

1 2 0 0

0 1 1 0

2 1 1 0

3 1

4 2

10

0 1 2

3 4 5

6 7 8

Texture holding the
vertex positions
(numbers are the index
of each polygon (each
cell consist of 3
vertexes))

0 0 1 0

1 2 0 0

0 1 1 0

2 1 1 0
The polygon with index 5 is
the first polygon of the
green cell

10 3 1

4 2

This way we get also a 2d position on the density map which we use to
interpolate the vertex positions.
If you want to learn more about this i recommend reading this paper: http://www.mpi-
inf.mpg.de/~gziegler/hpmarcher/techreport_histopyramid_isosurface.pdf

1.5 create vertex normals
Calculating the vertex normals is done with a shader which writes to a
512x512px texture. Each vertex now consist of 2 pixels in the textures
(position x y z, normal x y z, 2*ambient occlusion term).

1.6 additional work on cpu
We read the last texture back to system memory and copy it to a vertex
buffer of a mesh. Vertexes which are on the same position get merged,
this resolve in a smoother shading and removes thousands of unneeded
vertexes. Additional i create several lod meshes using face collapsing.

traps
The creation of the vertexes is the most difficult part. A gpu doesn't have
an integer unit, so you must always work with floats and clamp the
output to integers, this is needed for correct addressing of the
intermediate textures of the histopyramid. Another thing are loops in
shaders, the shader compiler always tries to unroll them which can result
in wrong code when using loops with conditional statements. Unrolled
loops are a must for Geforce6 hardware but are counterproductive on
Geforce8 or newer hardware.

http://www.mpi-inf.mpg.de/~gziegler/hpmarcher/techreport_histopyramid_isosurface.pdf
http://www.mpi-inf.mpg.de/~gziegler/hpmarcher/techreport_histopyramid_isosurface.pdf

2 Rendering

2.1 mesh deformations
The terrain and the sky model are normally flat, a vertex shader deforms
them to hemispheres. Nothing special but i does its job.

2.2 atmospheric scattering
The sky, the clouds, the terrain and the tower uses a simple atmospheric
scattering algorithm which is in noway accurate or optimized.

For each vertex a ray from the vertex position to the camera position
gets calculated. On the segment of the vertex to point B, 9 different
points P gets calculated. For each point P the length of the segment PA is
evaluated, the smaller this segment is the more light from the sun is
reflected from small particles in the air at the point P. The blue part of
the sun light gets 10 times more often reflected then the red part, this is
what makes our sky blue. But the longer this scattered light must travel
to the atmosphere towards the camera (the segment PB) the more light
gets blocked by particles in the air (more blue light gets blocked then red
one). This is what makes a red sky on sunsets/risings.
Another thing you must consider is that the air consist more dirt particles
at the ground.

Light on point P = max(dirtiness*length(PA)*rgb(0.1, 0.5, 1.0) –
dirtiness*length(PB)*rgb(0.01, 0.4, 1.0), 0);

I've got those values by experimenting.
The light of all points get summed up and added to the final color of the
object.

2.3 simple clouds
The texture of the cloud model gets overlayed 4 times at different scales
and positions to get a density. This is done 8 times, 1 time to get the

transparency value, and 7 times slightly offset to calculate a normal out
of the densities. This normal get used to light the model.

2 .4 texturing the tower
The shader of the tower uses a simple 3 planar mapping for the texture.
Sometimes called Cubemapping in modeling applications. It samples the
textures 3 times, using the yz, xy and xz world position as texture
coordinate. These 3 textures gets blended according to the vertex
normals, this way almost no stretching errors or seams are visible.

Christopher Bläsius
chris[at]swollen-eyeballs.org

16.08.2009
Thanks for reading, and ignoring all the typos. ;)

