[image: image22.jpg]

AUM CODE SNIPPETS 1 / 18

Made to one PDF file by Realspawn.
With Permision of George Pirvu
	 Stratego: RTS and TBS template

First of all, RTS stands for Real Time Strategy and TBS means Turn Based Strategy, but I guess you knew that already. I have created a game demo that will get you started if you plan to create a strategy game. The demo allows you to:
- move the camera;
- create two types of buildings; one produces soldiers, the other one produces nothing (can be used for technology upgrades?)
- move the units using a primitive path finding system.

I have set the screen resolution to 800x600 pixels and I have set mouse_range to 3000 just to make sure that I can touch and click anything on screen (default = 1000). I'm also using

var walk_speed = 2; // soldier speed
var animation_speed = 6; // soldier's animation speed.

My main function is simple (as always):

function main()
{
 D3D_PANELS = ON;
 LOAD_LEVEL (<strat1.wmb>);
 move_camera(); // new stuff here
}

Let's take a look at move_camera:

function move_camera()
{
 level_marginx = 200; // scroll the camera from -200 to 200
 level_marginy = 200; // on X and Y
 CAMERA.ARC = 70;
 CAMERA.X = 0; // build your levels with the starting point in the origin
 CAMERA.Y = 0; // because at game start the camera will point to the origin
 CAMERA.Z = camera_height; // change camera_height to get closer or farther to the ground
 CAMERA.PAN = 90; // set the camera to look down.
 CAMERA.TILT = -90;
 CAMERA.ROLL = 0;

 MOUSE_MAP = cursor_map; // choose the cursor and make it appear in the center of the screen
 MOUSE_POS.X = SCREEN_SIZE.X / 2;
 MOUSE_POS.Y = SCREEN_SIZE.Y / 2;
 MOUSE_MODE = 2;

 WHILE (1)
 {
 MOUSE_POS.X = POINTER.X; // mouse movement;
 MOUSE_POS.Y = POINTER.Y;

 IF (MOUSE_POS.X < 1 && CAMERA.X > level_marginx * (-1)) {CAMERA.X -= 10 * TIME;}
 IF (MOUSE_POS.X > SCREEN_SIZE.X - 2 && CAMERA.X < level_marginx) {CAMERA.X += 10 * TIME;}
 IF (MOUSE_POS.Y > SCREEN_SIZE.Y - 2 && CAMERA.Y > level_marginy * (-1)) {CAMERA.Y -= 10 * TIME;}
 IF (MOUSE_POS.Y < 1 && CAMERA.Y < level_marginy) {CAMERA.Y += 10 * TIME;}
 WAIT (1);
 }
}

The camera movement code works this way:

IF (MOUSE_POS.X < 1 && CAMERA.X > level_marginx * (-1))
{
 CAMERA.X -= 10 * TIME;
}

If the mouse moves to the left and reaches the left edge (MOUSE_POS.X < 1) and we can move the camera (CAMERA.X > -200) then we move the camera to the left (scroll left). The other 3 IF statements look and work in the same way; we're using SCREEN_SIZE.X and SCREEN_SIZE.Y to get the size of the screen in pixels for the right and bottom edge. We could have used numbers because we already know that we're running in 800x600 pixels, but this way our game is prepared for serious strategy games; the code can read the resolutions and adapt the camera movement automatically. Don't forget that the Y axis is reverted, so if we want to scroll upwards we have to reduce CAMERA.Y to make it work.

We are adding a panel that creates buildings if it is clicked and plays a nice sound when we're over the buttons using the mouse_over function:

PANEL main800_pan
{
 BMAP main800_map;
 LAYER 20;
 POS_X 0;
 POS_Y 0;
 BUTTON 4, 4, building1_map, building1_map, building11_map, create_building1, NULL, mouse_over;
 BUTTON 4, 65, building2_map, building2_map, building22_map, create_building2, NULL, mouse_over;
 FLAGS OVERLAY, REFRESH, TRANSPARENT, VISIBLE;
}

If we click the building1 button, it will trigger the create_building1 function:

function create_building1()
{
 WHILE (MOUSE_LEFT == 1 || MOUSE_RIGHT == 1) {WAIT (1);} // wait for mb release
 WHILE (1)
 {
 IF (MOUSE_LEFT == 1)
 {
 build1_pos.X = MOUSE_POS.X;
 build1_pos.Y = MOUSE_POS.Y;
 build1_pos.Z = camera_height; // place buildings at ground position
 vec_for_screen (build1_pos,CAMERA);
 CREATE (<build1.wmb>, build1_pos, build1_action);
 END;
 }
 IF (MOUSE_RIGHT == 1) {END;} // abort if right mouse button is pressed
 WAIT (1);
 }
}

If you click the building1 button, you could trigger several events, so this line

WHILE (MOUSE_LEFT == 1 || MOUSE_RIGHT == 1) {WAIT (1);}

waits for the left mouse button release, then all the stuff goes on. If the lmb is clicked again, we're getting the mouse pointer coordinates in build_pos, converting them to world coordinates with vec_for_screen. We create the building1 (build1.wmb) at pointer position and make it run the build1_action:

function build1_action()
{
 MY.PUSH = 20; // units (soldiers) have PUSH = 10, building have PUSH = 20
 WHILE (MOUSE_LEFT == 1) {WAIT (2);} // don't create units by mistake
 MY.ENABLE_SCAN = ON; // SCAN - sensitive
 MY.ENABLE_CLICK = ON;
 MY.EVENT = build_stuff1; // create units when clicked
 scan_area.PAN = 360;
 scan_area.TILT = 60;
 scan_area.Z = 900;
 vec_set (MY_POS, build1_pos);
 SCAN MY_POS, MY_ANGLE, scan_area;
 IF (RESULT > 0 && RESULT < 200) // buildings must be separated by 200 quants or more
 {
 PLAY_SOUND cantplacehere_snd, 100;
 REMOVE ME;
 }
 ELSE
 {
 PLAY_SOUND buildingplaced_snd, 100;
 }
}

Building1 is sensitive to SCAN and CLICK. When it is placed on the ground, it will start scanning around it. If another building was found nearby (RESULT > 0 means that SCAN has found another building) and it is closer than 200 quants, the newly created building is instantly removed. If there isn't any buiding in the area, the building succedes and a buildingplaced_snd sound is played.

What happens if any existing building is clicked? It's build_stuff1 event is triggered:

function build_stuff1()
{
 IF (EVENT_TYPE == EVENT_CLICK) // make sure it's a click
 {
 IF (MY.SKILL10 > 2)
 {
 END; // 8 positions filled, so stop creating units
 }
 IF (MY.SKILL9 == 1 && MY.SKILL10 == 1) // exclude center of the building
 {
 MY.SKILL9 += 1;
 }
 temp.X = unitstartxpositions[MY.SKILL9] + MY.X;
 temp.Y = unitstartxpositions[MY.SKILL10] + MY.Y;
 temp.Z = MY.Z;
 CREATE (<guard.mdl>, temp, unit1_action);
 PLAY_SOUND unitcreated_snd, 50;
 MY.SKILL9 += 1;
 IF (MY.SKILL9 > 2)
 {
 MY.SKILL9 = 0; // next row
 MY.SKILL10 += 1;
 }
 }
}

Every building can create up to 8 units (soldiers). We have a few arrays to help us do that:

var unitstartxpositions[3] = -65, 0, 65; // stores unit offsets related to the wmb center
var unitstartypositions[3] = -65, 0, 65; // we aren't using 0,0 (building center)

The idea is to place the building1 wmb on the ground; these arrays will help us place the units - look at this picture

function move_unit ()
{
 MY.PUSH = 10; // lower push for units
 IF (EVENT_TYPE == EVENT_ENTITY) // collision with buildings or other units
 {
 // caveman's path finding code
 EXCLUSIVE_ENTITY;
 MY.PAN = RANDOM (360);
 WAITT (10); // wait before setting the target again
 temp.X = MY.SKILL12; // stored mouse pointer coordinates
 temp.Y = MY.SKILL13;
 temp.Z = 0;
 vec_sub (temp, MY.X);
 vec_to_angle (MY.PAN, temp); // rotate unit towards the target again
 // remove the lines above if you want to add your path finding code
 }
 IF (EVENT_TYPE == EVENT_CLICK)
 {
 MY.SKILL11 = 0;
 WHILE (MOUSE_LEFT == 1) {WAIT (2);} // wait for lmb release
 WHILE (MY.SKILL11 == 0) // wait for the target to be set (lmb click)
 {
 IF (MOUSE_LEFT == 1)
 {
 EXCLUSIVE_ENTITY; // stop parallel running actions for this unit
 MY.SKILL11 = 1; // target has been set
 temp.X = MOUSE_POS.X;
 temp.Y = MOUSE_POS.Y;
 temp.Z = camera_height;
 vec_for_screen (temp, CAMERA); // temp holds pointer's coords now
 MY.SKILL12 = temp.X; // store pointer's coords before they get lost
 MY.SKILL13 = temp.Y;
 vec_sub (temp, MY.X);
 vec_to_angle (MY.PAN, temp); // rotate unit towards mouse
 MY.SKILL15 = 500; // maximum path length = fuel :)
 WHILE (abs(MY.X - MY.SKILL12) + abs(MY.Y - MY.SKILL13) > 3 && MY.SKILL15 > 0) // stops near the mouse pointer
 {
 move_mode = ignore_you + ignore_passable;
 ent_move (walk_speed, nullvector);
 ent_cycle("walk", MY.SKILL14);
 MY.SKILL14 += animation_speed * TIME;
 IF (MY.SKILL14 > 100) {MY.SKILL14 = 0;}
 MY.SKILL15 -= TIME; // burn fuel
 WAIT (1);
 }
 ent_cycle("stand", 0); // set the idle frame
 }
 WAIT (1);
 }
 }
}

We'll ignore IF (EVENT_TYPE == EVENT_ENTITY) for now; this happens only if the soldier collides with one of the buildings or other soldiers. To move the soldiers, we click on them (producing an EVENT_CLICK), then we want to click somewhere on the map and we expect to unit to move there. I'm using soldier's SKILL11...SKILL15 in this function; I could have used SKILL9 and 10 because they aren't connected with SKILL9 and 10 used in the building functions, but I wanted to make the things as clear as possible.

When we click the unit, its SKILL11 is set to zero and it will stay this way until we click on the map to set the target. If we have set the target, temp is used to get the mouse pointer coordinates; we're converting them to world positions with vec_for_screen and we're safely storing them in SKILL12 and 13 because temp can suddenly change its value; we already know unit's Z coordinate, so we don't need to store it.

The unit must rotate towards the mouse then it will start moving, trying to reach its target. My path finding code is really simple, so the unit can "think" too much before finding the right path; this is why I have added "fuel". If a unit can't find its correct path, it will move towards the target until it burns all its fuel

WHILE (abs(MY.X - MY.SKILL12) + abs(MY.Y - MY.SKILL13) > 3 && MY.SKILL15 > 0)

will make the unit stop when it reaches the target or when SKILL15 = 0 (it ran out of fuel). I'm using a simple method to check if the unit has reached the target; please remember that SKILL12 and SKILL13 are holding target's coordinates.

[image: image1.jpg]MY.X - MY.SKILL12 |

SKILL12&13 ——

w (target)
MY

: MY.Y - MY.SKILL13
(unit)

The unit moves towards the target and the "blue" differences become smaller and smaller. When their sum is smaller then 3, the unit stops.
I have used the new guard.mdl file; it walks with walk_speed set at the beginning and is animated using these lines:

ent_cycle("walk", MY.SKILL14);
set the animation frames to the first walk frame (MY.SKILL14 = 0 for now, so the guard is set at the first walking frame)

MY.SKILL14 += animation_speed * TIME;
go through all the walk animation frames; SKILL14 contains the current walk frame

IF (MY.SKILL14 > 100) {MY.SKILL14 = 0;}
loop the animation

If the unit has stopped (reached the target or ran out of fuel), it switches to stand mode

ent_cycle("stand", 0); // set the idle frame = first stand frame

Did I say this was the latest function? We've got the path finding code to discuss, but it is really simple:

IF (EVENT_TYPE == EVENT_ENTITY) // collision with buildings or other units
 {
 // caveman's path finding code
 EXCLUSIVE_ENTITY;
 MY.PAN = RANDOM (360);
 WAITT (10); // wait before setting the target again
 temp.X = MY.SKILL12; // stored mouse pointer coordinates
 temp.Y = MY.SKILL13;
 temp.Z = 0;
 vec_sub (temp, MY.X);
 vec_to_angle (MY.PAN, temp); // rotate unit towards the target again
 // remove the lines above if you want to add your path finding code
 }
...

If the unit collides with something, it picks a random direction and moves for a little more than 1/2 second, then it "reads" the right direction from SKILL12 and 13 and tries to reach the target again.

There are many things that you should add to this code to make it perfect ;)
- Better path finding code;
- The buildings can't be placed one over the other, but you can place buidings on top of isolated units and that's wrong. I wouldn't use SCAN for every unit because it would slow down the game in theory (I did that with the buildings, but there aren't too many of them in a level). I would store all the unit positions in an array and I would compare building's coordinates with all the unit coordinates stored in the array. The array could be used to improve the path finding algorithm, too.
- Etc.

Please note that I have used a regular model with 644 polygons for the soldier. I wouldn't do that if I were you - with 100 models visible on screen at the same time, you'll slow down the engine and you don't want that.

 SCRAP - SCReen cAPture code

If you are like me, you have looked at the METAL movie in "Hot features" and you're wondering: how did he do that movie? He must have used two PCs and a great capture card... This is a good method and I have successfully used it for my first Takeover movies, but then I thought that I should use a single PC and I came up with this simple scrap code.

First of all, I'd like to say that I heard somebody at the forum speaking about this and it inspired me (I can't find the post anymore, maybe it got deleted by mistake). The idea was to use SCREENSHOT every time the player was moving and save the shots on the hard drive, then assemble a movie using the screenshots. Scrap works in a different way, but uses the same idea.

You'll have to INCLUDE scrap.wdl in your game file; don't forget to insert scrap_movie(); in main to call the scrap function,

var Count = 11000; // just a number bigger than 10000
var Count1 = 0;
var Count2 = 0;
var Count3 = 0;
var Count4 = 0;
var Count5 = 0;
var Count6 = 0;
var Count7 = 0;
var Count8 = 0;
var Count9 = 0;

function scrap_movie ()
{
 WHILE (1)
 {
 IF (Count == 11000 && KEY_M == 1) {WAIT (2); Count = 0;}
 WHILE (KEY_M == 1) {WAIT (1);}
 WHILE (count < 10000)
 {
 Count1 = Count - 1000;
 Count2 = Count - 2000;
 Count3 = Count - 3000;
 Count4 = Count - 4000;
 Count5 = Count - 5000;
 Count6 = Count - 6000;
 Count7 = Count - 7000;
 Count8 = Count - 8000;
 Count9 = Count - 9000;

 IF (Count < 10) {screenshot "Mv000",Count;}
 IF (Count >= 10 && Count < 100) {screenshot "Mv00",Count;}
 IF (Count >= 100 && Count < 1000) {screenshot "Mv0", Count;}
 IF (Count >= 1000 && Count < 1010) {screenshot "Mv100", Count1;}
 IF (Count >= 1010 && Count < 1100) {screenshot "Mv10", Count1;}
 IF (Count >= 1100 && Count < 2000) {screenshot "Mv1", Count1;}

 IF (Count >= 2000 && Count < 2010) {screenshot "Mv200", Count2;}
 IF (Count >= 2010 && Count < 2100) {screenshot "Mv20", Count2;}
 IF (Count >= 2100 && Count < 3000) {screenshot "Mv2", Count2;}

 ..
 // repeats for Count = 3000...8000

 IF (Count >= 9000 && Count < 9010) {screenshot "Mv900", Count9;}
 IF (Count >= 9010 && Count < 9100) {screenshot "Mv90", Count9;}
 IF (Count >= 9100 && Count < 10000) {screenshot "Mv9", Count9;}

 Count += 1;
 IF (KEY_M == 1) {WAIT (2); Count = 11000;}
 WHILE (KEY_M == 1) {WAIT (1);}
 WAIT (1);
 }
 WAIT (1);
 }
}

We're using Count to start or stop the movie when the "M" key is pressed; if Count is smaller than 10000, the shots are saved on your hard drive; to stop this process, we're setting Count to 11000 (any number greater than 10000 is a valid Count number).

SCREENSHOT can save up to 999 shots so if your movie is going to have 25 fps, you're limited to 999 / 25 = 40 seconds. I have added a few variables (Count1...Count9) that are used to expand the screenshots to 9999 shots = 7 minutes with 25 fps.

When you press M, you'll notice a slowdown - that's normal because the shots are saved on your hard drive. When you want to finish the capture, press M again. Exit the game and move to the shots folder - you can create one like this:

SAVEDIR "C:\\SHOTS";

If you don't use a line like this in your main file, the shots will be saved in your working folder, mixing with the rest of your files.

Please take a look at the shots; their names start with mv0000.pcx and can continue to mv3201.pcx for example. Use any program that can convert pcx files to movies (Animation Shop that comes with Paint Shop Pro is a good example), then save the movie as avi, mpg, etc.

Use small resolutions for your movies; they'll look great anyway because they're ran in small windows, not in full screen. I use 320x200 all the time and this is the way I've created the METAL movie, too. Just change the screen resolution to 320x200 in your game, then press M to start the capture. If you've seen some game preview movies, you've noticed they all come in small sized windows.

I ran a test on two of my computers: Athlon 900 MHz, 60 GB Quantum Fireball Plus AS 7200 rpm and Athlon 750 MHz, 13 GB Quantum Fireball 4400 rpm. Scrap saves around 25 fps on the system with the fast hard drive and 15 fps for the second PC. If you get more than 8 fps, you can create movies - the movies on my site have 15 fps and a decent size.

If you have a good processor with a fast hard drive, you can create 400x300 pixels movies, but their size is too big unless you make a 2 second movie. Intel PIII 1000 MHz with 60GB QFB Plus AS 7200 rpm will deliver 15 fps in 400x300.

Mani(a)c Miner - the little man returns in full 3D

I remember myself playing those good old games on my Sinclair Spectrum computer; 32Kb of Ram were enough to write a great looking game. One of my favorites was Manic Miner - a game where you play the little man that has to collect some stuff in order to open the door to the next level. It's a classic, but I simply loved it.

By the end of this article, you'll learn how to create any type of platform / arcade 3D game, including Manic Miner. But first, let's give them a warm welcome:

guard.mdl aka 'Maniac Miner'
oldone.mdl aka 'Rock'
curtain.mdl aka 'Curtain'
cola.mdl aka 'Cola'

and finally

evilplnt.mdl also known as "The Evil Plant"! Is this scary or what?

Function main is so simple - there's nothing to explain here. Every object has its own action and we know that these actions start when we run the level without doing anything special. Before I forget: I'm using simplified actions / functions from time to time to make all this stuff easier for you - look at the wdl files for extra spices.

Action player_start is the corresponding action for guard.mdl:

action player_start
{
 start_coords.x = my.x;
 start_coords.y = my.y;
 start_coords.z = my.z;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = maniac_event;
 points = 0;
 maniac_moves();
}

First of all, we store maniac's (player's) coordinates because it will be returned to this position if it dies. If the maniac collides with any entity, its maniac_event will be triggered. Finally, we set score to 0 and we call the function that takes care of maniac's movement:

function maniac_moves()
{
 while (1)
 {
 maniac_gravity;
 if (key_force.x != 0)
 {
 if (key_force.x > 0)
 {
 player.pan = 0;
 }
 else
 {
 player.pan = 180;
 }
 walk_speed.x = maniac_speed;
 ent_cycle("walk", my.skill9);
 my.skill9 += animation_speed * time;
 if (my.skill9 > 100) {my.skill9 = 0;}
 }
 else
 {
 ent_cycle("stand", my.skill10);
 my.skill10 += stand_speed * time;
 if (my.skill10 > 100) {my.skill10 = 0;}
 walk_speed.x = 0;
 }
 if (key_space == 1)
 {
 maniac_jump();
 }
 move_mode = ignore_you + ignore_passable;
 ent_move (walk_speed, nullvector);
 wait (1);
 }
}

There is a call to maniac_gravity and then some strange key_force.x stuff. When you press the left or right arrow keys on your keyboard, key_force.x changes from 0 to -1 or 1, depending on what key you have pressed. The instruction ent_move (walk_speed, nullvector); will move the maniac in the direction that it is facing so if we make the maniac change its pan angle, it will be enough to make it go in that direction. Because its move_mode = ignore_you + ignore_passable, the maniac can pass through passable entities.

ent_cycle("walk", my.skill9);
my.skill9 += animation_speed * time;
if (my.skill9 > 100) {my.skill9 = 0;}

I have explained how ent_cycle works in Aum2 - here's a short version: at game start, my.skill9 = 0, so ent_cycle("walk", my.skill9); sets guard's frame to the first walk frame (if guard.mdl has some animation frames named 'walk'); my.skill9 increases because of the 2nd line of code - therefore the walking frames are changing. If we reach the last walking frame (this means my.skill9 = 100), we are looping the walking animation using the last line of code.

Now let's get back to maniac_moves(). If we don't press one of the arrow keys, maniac will "stand" and its speed on x will be reset. If we press space, the maniac will jump:

function maniac_jump()
{
 while (jump_time > -1)
 {
 if (key_space == 0) {return;}
 walk_speed.z = jump_height * time * jump_time;
 jump_time -= 0.04 * time;
 wait (1);
 }
 while (key_space == 1) {wait (1);}
 jump_time = 1;
}

[image: image2.jpg]

When the maniac is on the ground, jump_time = 1. The idea is to give the maniac a positive walk_speed.z for a limited time, then make it negative - otherwise the maniac would jump up in the sky and we don't want that! When we press space, jump_time decreases until it is smaller than -1 (the red line in the picture above). When jump_time = -1 the jump is finished; we wait for key_space to be released then we allow the maniac to jump again.

If we press space and then we release it while we're still in the while(jump_time > -1) loop, the following instruction will be executed: if (key_space == 0) {return;}
This allows us to have longer or shorter jumps, depending on how much time "space" has been pressed because as long as jump_time > 0, the jump is getting higher. If we release space quickly and jump_time has only decreased to 0.8 the jump is shorter than the one that is performed for jump_time = 0.1

Function maniac_gravity() takes care that the maniac stands on the ground (if it isn't jumping):

function maniac_gravity()
{
 vec_set (temp, my.x);
 temp.z -= 2000;
 trace_mode = ignore_me + ignore_sprites + ignore_models + use_box;
 my.skill11 = trace(my.x, temp);
 if (my.skill11 > 2)
 {
 walk_speed.z -= 2 * time;
 }
 else
 {
 walk_speed.z = 0;
 jump_time = 1;
 }
 if (my.skill11 < 0)
 {
 walk_speed.z += 5 * time;
 }
}

We're using trace to get maniac's height above the ground and we're storing it in skill11. While we're in the air (skill11 > 2) we use a negative speed on z to pull the maniac down. If skill11 <= 2, we assume that the maniac is on the ground, so we reset its speed on z and we allow him to jump again by setting jump_time to 1. It is possible to see the maniac getting stuck with its feet in the ground, so we pull it out a little by giving him a positive z speed boost if my.skill11 < 0.

If the maniac collides with something, its event is triggered - you already know that. Here's what happens:

function maniac_event()
{
 if (event_type == event_entity || event_type == event_push || event_type == event_impact)
 {
 wait (1);
 if (you.skill9 == 1)
 {
 player.x = start_coords.x;
 player.y = start_coords.y;
 player.z = start_coords.z;
 points = 0; // reset score
 beep;
 }
 }
}

This function checks if the entity that collided with the maniac has its skill9 set to 1 (this is correct for all the "bad" entities). If this is correct, the maniac has to die, so it will be warped to its starting position (remember we've stored it at game start?), the score will be reset and so on.

The maniac has to be afraid by two entities: the rock and the evil plant. The rock has a simple action:

action rock
{
 my.y = player.y;
 my.skill9 = 1;
}

The first line makes sure that even if we place the rock (in wed) in a wrong position, it will match player's y coordinate at game start - this way we make sure that the collision can happen. The rock is "bad", so it has its skill9 set to 1. The evil plant has a bigger action:

action evil_plant
{
 plant_speed.y = 0;
 plant_speed.z = 0;
 my.y = player.y;
 my.skill9 = 1;
 while (1)
 {
 move_mode = ignore_you + ignore_passable;
 ent_move (plant_speed, nullvector);
 my.skill20 += plant_speed.x;
 if (my.skill20 == my.skill1 || my.skill20 == my.skill1 * -1)
 {
 plant_speed.x *= -1;
 }
 wait (1);
 }
}

The plant moves only on x (from left to right and back), so we're setting its speed on y and z to 0; The plant moves all the time using ent_move in a while loop; we're storing the distance covered by the plant in skill20. On the other hand, we have set the maximum distance in wed (skill1). If the distance is smaller than -skill1 or bigger than skill1, the plant will change its direction. This action has a few more lines of code; one of them is

 my.skill1 *= plant_speed;

Can you guess what's happening here?

Finally, the good stuff:

action eat_dots
{
 my.y = player.y;
 my.enable_impact = on;
 my.event = dot_action;
}

You can eat cola dots - they react on impact, triggering the following function:

function dot_action()
{
 if (event_type == event_impact)
 {
 my.invisible = on;
 my.passable = on;
 play_sound eatdot_snd,70;
 points += 10;
 }
}

I don't want to "remove" the dots because there are other actions that might need the my synonym. I prefer to make the dots invisible and passable - they won't exist for the player anymore.

If the maniac has managed the get to the top of the level, the curtain waits for the impact. If it happens, a nice zoom out effect is applied, allowing us to see the whole level.

There's something more to explain: the score panel. We start by defining a font and a string (to write "Score:" at the bottom of the screen):

font comic_font, <comic20.pcx>, 34, 38;
string score_string, "Score:";

We define a panel that is always visible:

panel score_panel
{
 pos_x = 0;
 pos_y = 0;
 digits 650,550,4,comic_font,1,points;
 flags = refresh, visible;
}

digits 650,550,4,comic_font,1,points; = "display the variable points using comic_font, with four digits, multiplied by 1, at (650,550) pixels from the upper left corner".

We define a text that is always visible to show "Score:"

text score_text
{
 pos_x = 470;
 pos_y = 550;
 font = comic_font;
 string = score_string;
 flags = visible;
}

Before I forget, Manic Miner (PC version) is freely available for download at

Manic Miner's Homepage:
http://www.andyn.demon.co.uk

If you think that Manic Miner is too easy to play, wait until you meet the Kong Beast!

The rope and the ladder code - pay one and get the other one for free

By the time I'm writing this article, I haven't tested if the rope code works fine with ladders too, so let me create a small test level and I'll get back with you asap... I have created office.wmp - it has a rope and a ladder in it.

I have told you that the code is really simple. Let's take a look at it:

action rope
{
 gravity_temp = gravity;
 my.enable_impact = on;
 my.event = rope_action;
}

If you take a look at movement.wdl in template, you'll see that the gravity is controlled by 'gravity' - a variable that changes its value if the player is under the water, etc. That's what I have used here: if the player is close enough to the rope / ladder, gravity is set to 0.01 (close to 0) and the player is able to move up and down without falling. Please note that we store the initial 'gravity' in our 'gravity_temp' variable; you can use another entity skill for that if you want to save some memory. Let's see the rest of the code:

function rope_action()
{
 if (event_type == event_impact && you == player)
 {
 while (my.skill10 < my.skill1)
 {
 my.skill10 = abs(my.x - player.x) + abs(my.y - player.y);
 gravity = 0.01;
 if (key_home == 1 && my.z + (my.max_z - my.min_z) / 2 > player.z - (player.max_z - player.min_z) / 2)
 {
 move (player, rope_speed_up, nullvector);
 }
 if (key_end == 1) // go down
 {
 move (player, rope_speed_down, nullvector);
 }
 wait (1);
 }
 gravity = gravity_temp;
 }
 my.skill10 = 0;
}

If the player collides with the rope, we check if he continues to be close to the rope in the while loop. At game start, skill10 = 0 so the condition in while is true. We compute the distance between the player and the rope on x and y and if it is small enough (smaller than skill1, which is set in wed), we're still inside the while loop, so we can move the player up and down using the keys home (up) and end (down). You'll have to choose the best value for skill1 when you're testing your ropes and ladders - this value depends on the player width, rope / ladder size, etc. If the player gets away from the rope, gravity = gravity_temp restores the original gravity and the player can walk, run or swim as before.

Don't let this line:

if (key_home == 1 && my.z + (my.max_z - my.min_z) / 2 > player.z - (player.max_z - player.min_z) / 2)

stand in your way; the explanation is quite simple. The distance between the rope / ladder and the player is computed only on x and y (I'll let you guess why), so the player could climb way above the end of the rope / ladder without loosing its x and y coordinates. This scary line makes sure that player's feet stop climbing at the end of the rope / ladder. You know that my refers to the rope / ladder. If you create an entity with its center in the origin (and I would always do that if I were you), its x, y and z are located in the center of the entity.

We can't use something like that:

if (key_home == 1 && my.z > player.z) because this won't allow the player to climb to the end of the rope / ladder

[image: image3.jpg]~ my.max_z
1 2
my.Z § § player.z rope height

1 my.min_z

If you take a look at the first picture, you see that we must find out the 'height' (length) of the rope; fortunately we can use max_z - min_z to find it out (2nd picture). Our goal is to allow the player to climb on top of the rope / ladder (3rd picture). I hope that you know that the rope is red and the player is blue; their origins are the yellow dots.

If you look at the 1st picture again, you see that if we add half of the rope to its center (which is my.z) we get the upper z rope coordinate; that's :

my.z + (my.max_z - my.min_z) / 2

If the player has its origin in the center too (we're assuming that this is true), its lower z coordinate (player's feet) will be given by:

player.z - (player.max_z - player.min_z) / 2

We are substracting half of its body from its center, so the player can climb as long as his feet aren't above the top of the rope. Btw, the player climbs using a simple move instruction and two vectors: one of them has a positive speed on z, the other one has a negative speed on z. Change these values to get different climbing speeds.

This rope / ladder code is way too simple to be perfect but it is something that will get you started.

Intelligent cameras

Many of you have asked me about the best method to create some cameras that will act like the ones in Resident Evil. I came up with a simple solution that has the advantage that the cameras are constantly looking at the player so they can’t miss the hero if you place a reasonable number of cameras in your level.

This example was created for 50 cameras but you can have as many as you want. To test the code, include recam.wdl and call fixed_cameras() in main. Place some dummy models in your level (I have used fish.mdl) set their pan, tilt and roll angles in Wed and attach the recam action to them. Don’t forget to set skill1for these models to 1..50; you don’t have to set it in a particular order; just make sure that you don’t have two cameras with the same skill1 value set in Wed. The values set for skill1 are used by the wdl to select the camera with the best view at a certain moment. If you want, you can load and run my modified office.wmp to see an example.

I don’t want to modify the templates so I have to disable the current view and enable the new re_camera view. Let’s take a look at the recam action first:

action recam
{
 my.invisible = on;
 my.passable = on;
 re_camera.tilt = my.tilt;
 re_camera.roll = my.roll;
 if (my.skill1 == 0) {remove me; beep; beep; return;}
 while (1)
 {
 camera_position[my.skill1] = vec_dist(my.x, player.x);
 if (winner > camera_position[my.skill1] - 50)
 {
 re_camera.x = my.x;
 re_camera.y = my.y;
 re_camera.z = my.z;

 vec_set(temp, player.x); // re_camera's pan
 vec_sub(temp, my.x);
 vec_to_angle(re_camera.pan, temp);
 }
 wait (1);
 }
}

The dummy models are made invisible and passable; their orientation (tilt, roll) is used by re_camera. Pan is computed every frame to make the cameras look at the player without missing it for a second.

I’m using the array camera_position[50] to store the distance between every camera and the player; camera_position[1] holds the distance between the player and camera that has its skill1 set to 1 in Wed, camera_position[35] holds the distance between the player and the camera that has its skill1 set to 35 and so on. I’m using a simple vec_dist(my.x, player.x) to compute the distance between the player and the camera. I have declared a variable named winner – this is the smallest distance between the player and any camera. If we find a winner, we set re_camera to the new (fish) coordinates and we constantly rotate it towards the player using a simple vec_to_angle instruction.

function fixed_cameras()
{
 camera.visible = off;
 re_camera.visible = on;
 while (1)
 {
 temp_counter += 1;
 if (temp_counter == 50)
 {
 temp_counter -= 49;
 }
 if (camera_position[temp_counter] < winner && camera_position[temp_counter] > 0)
 {
 winner = camera_position[temp_counter];
 found_camera = temp_counter;
 }
 else
 {
 winner = camera_position[found_camera];
 }
 wait (1);
 }
}

Function fixed_cameras includes a while loop that constantly looks for winners. If the distance between the camera and the player is smaller than winner, this camera will be activated. We have to make sure that camera_position[temp_counter] is bigger than zero because our level could use less than 50 cameras – all the unused values in the array are zero but this shouldn't make them winners.

I hope that you will have fun with this camera code.

Earthquake

If you need to add an earthquake to your 1st person game, there's a simple solution: store player’s eye height (eye_height_up) from templates, then play with it and with player’s roll angle. Restore the original values when the earthquake is over and everything will work as before.

The good thing with this code is that you can't jump out of the level because you aren't moving at all (of course you can add code for that); unfortunately, your customer doesn't know this, so he will certainly fall in that lava pool because he will move in order to keep the player in a safe area :)

The earthquake starts when you run into an entity (attach it the quakegen action, make it invisible if you want). I would use a visible stair (built as a wmb entity) that leads to a rope bridge placed above the lava pool:

action quakegen
{
 my.enable_impact = on;
 my.event = earthquake;
}

function earthquake
{
 my.skill9 = eye_height_up;
 my.skill10 = random(100) + 20;
 my.skill11 = random(100) + 100;
 waitt(my.skill10);
 while (my.skill11 > 0)
 {
 if (random(1) > 0.9)
 {
 play_sound eq_snd, 30;
 }
 if (eye_height_up > 0.2)
 {
 eye_height_up += 0.1 - random(2)/10;
 }
 player.roll += 10 - random(20);
 my.skill11 -= 0.1 * time;
 waitt(2);
 }
 eye_height_up = my.skill9;
 player.roll = 0;
}

Skill10 gives the initial delay (so the player can’t tell when / if he has triggered the earthquake) and skill11 gives the duration; play with these values.

Cutscene camera code

Here's how it works: you press R (record) and move the camera around the player (or wherever you want) ; all this time camera's coordinates (x y z pan tilt roll) are stored in a huge array. Press R again to stop recording - a small file (cutdata.txt) is saved on your hard drive. Now you can load it and play it whenever you want. Let's take a look at the code:

view cutscene_camera{}
var start_pos[6];

action cutscene_on
{
 start_pos[0] = my.x;
 start_pos[1] = my.y;
 start_pos[2] = my.z;
 start_pos[3] = my.pan;
 start_pos[4] = my.tilt;
 start_pos[5] = my.roll;

 waitt (64);

 camera.visible = off;
 cutscene_camera.size_x = screen_size.x;
 cutscene_camera.size_y = screen_size.y;
 cutscene_camera.pos_x = 0;
 cutscene_camera.pos_y = 0;
 cutscene_camera.x = my.x;
 cutscene_camera.y = my.y;
 cutscene_camera.z = my.z;
 cutscene_camera.visible = on;
 on_mouse_right = null;
 while (1)
 {
 cutscene_camera.x += 30 * cos(cutscene_camera.pan) * (mouse_right - mouse_left) * time;
 cutscene_camera.y += 30 * sin(cutscene_camera.pan) * (mouse_right - mouse_left) * time;
 cutscene_camera.z += 100 * sin(cutscene_camera.tilt) * (mouse_right - mouse_left) * time;
 cutscene_camera.pan -= 20 * (mouse_force.x) * time;
 cutscene_camera.tilt += 25 * (mouse_force.y) * time;
 if (key_r == 1 && index == 0) // if we press r and we aren't recording already
 {
 record_data();
 }
 if (key_p == 1) // if we press p
 {
 play_data();
 }
 wait (1);
 }
}

First of all you have to place an entity in the level and attach it the cutscene_on action; its position should be close to the final cut scene position. We store the initial position (x y z pan tilt roll) in start_pos[6] and then we wait 4 seconds to make sure that the splash screen has disappeared. I have created a new view named cutscene_camera that will replace the default view (camera). The new cutscene_camera view moves using the mouse and its buttons (including the right mouse button - RMB) so I had to disable other right click actions. The code that moves the cutscene_camera is simple (take a look at the cameras in Aum4 - I have similar code there). Maybe you are wondering what's with (mouse_right - mouse_left). When we press the RMB, mouse_right = 1 and the camera will move forward; when we press the LMB, mouse_right = 0 and mouse_left = 1 so the camera will move backwards. If both buttons are pressed the camera won't move because (mouse_right - mouse_left) = 0 (this happens if none of them is pressed, too).

if (key_r == 1 && index == 0)
{
 record_data();
}
if (key_p == 1)
{
 play_data();
}

If we press R and we aren't recording already record_data is called; we should press P to load and play the previously stored data.

Function record_data stores camera's coordinates in the array and saves the file that contains it on the hard disk.

var cutscene_position[60000];

function record_data()
{
 index = 0;
 while (index < 60000)
 {
 cutscene_position[index] = 0;
 index += 1;
 }
 index = 0;
 while (key_r == 0 && index < 59994)
 {
 cutscene_position[index+0] = cutscene_camera.x;
 cutscene_position[index+1] = cutscene_camera.y;
 cutscene_position[index+2] = cutscene_camera.z;
 cutscene_position[index+3] = cutscene_camera.pan;
 cutscene_position[index+4] = cutscene_camera.tilt;
 cutscene_position[index+5] = cutscene_camera.roll;
 index += 6;
 wait (1);
 }
 filehandle = file_open_write("cutdata.txt");
 temp = 0;
 while (temp <= index)
 {
 file_var_write(filehandle, cutscene_position[temp]);
 temp += 1;
 }
 file_close(filehandle);
 beep;
}

First of all we reset the array to make sure that its end won't contain data from previously recorded cut scenes. I have used an array with 60,000 elements; we use 6 of them every frame (x y z pan tilt roll) so this is enough for 10,000 frames; even if your game runs with 100 fps you can record for 100 seconds (increase the number of elements if this isn't enough for you).

The recording stops when we press R again or when the array has been filled. The first instruction after the while loop opens (or creates and opens, if it doesn't exist) the file named cutdata.txt. The data in cutscene_position is written in this file; in the end a simple beep tells us that the recording is really over.

The last function opens the cutdata.txt file, reads its content and restores the cutscene_camera positions every frame:

function play_data()
{
 filehandle = file_open_read("cutdata.txt");
 index = 0;
 temp = 0;
 while (key_l == 0 || temp < 59994)
 {
 cutscene_camera.x = file_var_read(filehandle);
 cutscene_camera.y = file_var_read(filehandle);
 cutscene_camera.z = file_var_read(filehandle);
 cutscene_camera.pan = file_var_read(filehandle);
 cutscene_camera.tilt = file_var_read(filehandle);
 cutscene_camera.roll = file_var_read(filehandle);
 if (cutscene_camera.x + cutscene_camera.y + cutscene_camera.z + cutscene_camera.pan + cutscene_camera.tilt + cutscene_camera.roll == 0)
 {
 index = 0;
 cutscene_camera.x = start_pos[0];
 cutscene_camera.y = start_pos[1];
 cutscene_camera.z = start_pos[2];
 cutscene_camera.pan = start_pos[3];
 cutscene_camera.tilt = start_pos[4];
 cutscene_camera.roll = start_pos[5];
 return;
 }
 temp += 1;
 wait (1);
 }
}

The camera stops when we have reached the end of the file (temp > 59994) or when we find the first zero elements in the array (look at the if structure - there's the test); the camera will be moved to its initial position. There are two small panels for recording (red) and playing (green) but they're way too simple.

Redefining the keys

The ability to redefine the keys can be implemented even if you use A4 but it is much easier to do it with A5. I have created a standalone example that moves a wmb box in a small level; you can redefine the movement keys anytime you want to by clicking a small panel.

First of all we define some strings, vars, a panel (click on it to redefine the keys) and a text:

string empty_str, " ";
string up_str, "Move up";
string down_str, "Move down";
string left_str, "Move left";
string right_str, "Move right";
var left_key;
var right_key;
var up_key;
var down_key;
entity* player;

panel redefine_pan
{
 bmap redefine_map;
 pos_x = 510;
 pos_y = 10;
 flags = refresh, overlay, visible;
 on_click = change_keys();
}

text redefine_txt
{
 pos_x = 10;
 pos_y = 10;
 font = comic_font;
 string = empty_str;
}

Function main is simple:

function main()
{
 fps_max = 50;
 d3d_panels = on;
 load_level (<redeftst.wmb>);
 wait (2);
 camera.x = 0;
 camera.y = 0;
 camera.z = 490;
 camera.tilt = -90;
 mouse_map = pointer_map;
 mouse_mode = 2;
 while(1)
 {
 mouse_pos.x = pointer.x;
 mouse_pos.y = pointer.y;
 wait(1);
 }

}

We set the camera position and angle, we select the mouse pointer and we make it visible (mouse_mode = 2); function main ends with some code that moves the mouse. The action associated to the player contains a single line of code:

action set_player
{
 player = me;
}

Every time we click the redefine_pan panel, change_keys is executed:

function change_keys()
{
 redefine_txt.visible = on;

 redefine_txt.string = up_str;
 while (key_any == 0) {wait(1);}
 while (key_any == 1) {wait(1);}
 up_key = key_lastpressed;
 key_set(up_key, move_up);

 redefine_txt.string = down_str;
 while (key_any == 0) {wait(1);}
 while (key_any == 1) {wait(1);}
 down_key = key_lastpressed;
 key_set(down_key, move_down);

 redefine_txt.string = left_str;
 while (key_any == 0) {wait(1);}
 while (key_any == 1) {wait(1);}
 left_key = key_lastpressed;
 key_set(left_key, move_left);

 redefine_txt.string = right_str;
 while (key_any == 0) {wait(1);}
 while (key_any == 1) {wait(1);}
 right_key = key_lastpressed;
 key_set(right_key, move_right);

 redefine_txt.visible = off;
}

Let's take a good look at the code for the "Move up" key - the code for all the other keys is similar:

redefine_txt.visible = on;
Makes the text visible

redefine_txt.string = up_str;
Displays the "Move up" string

while (key_any == 0) {wait(1);}
Waits until we press a key

while (key_any == 1) {wait(1);}
Waits for release

up_key = key_lastpressed;
Stores the last pressed key in the up_key variable

key_set(up_key, move_up);
Assigns function move_up to the key

I have used a simple move_up function, without collision detection. You don't want to use a function like that in your game.

function move_up()
{
 while (key_pressed(up_key) == 1)
 {
 player.x += 10 * time;
 wait (1);
 }
}

As long as the key stored in up_key is pressed, the player (the box) is moved to the right. The functions that are used to move the box down, left and right are similar. Make sure that the functions associated to the player are using a single key (you need an action that moves the player to the right, another one that moves the player to the left and so on).

Thin Space 3D

Have you ever played Demon Star? Thin Space 3D is nowhere near DS' graphics but you want the code, not the gfx, right? By the end of this article you will have a playable level with cannons, enemies... ok, you read that on the main page.

This time I'm using the function main itself to restart the game

on_r main();

function main()
{
 while (key_r == 1) {wait (1);}
 waitt (8); // wait 0.5 seconds before restarting
 load_level <space01.wmb>;
 score = 0; // reset the score at game start
}

We don't want to trigger multiple restarts if we keep R (restart) pressed for too long so I had to put a while loop inside main.

All the entities are triggering the explode_me() function when they have to be killed (player, enemies, rockets, etc)

function explode_me()
{
 exclusive_global;
 play_sound explo_snd, 100;
 if (you.skill2 == 1) {score += 10 + random(10);}
 remove me;
}

If this function was triggered by a bad guy (skill2 = 1) player's score increases. The player controls the ship using this action:

action ship
{
 player = me;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 camera.diameter = 0;
 camera.tilt = -90;
 camera.pan = 90;
 camera.z = my.z + 700;
 while (1)
 {
 if (my.y > 2975) {return;}

 ship_speed.x = 0;
 ship_speed.y = 10 * time;
 ship_speed.z = 0;
 if (key_cuu == 1)
 {
 ship_speed.y += 20 * time;
 }
 if (key_cud == 1)
 {
 ship_speed.y -= 5 * time;
 }
 if (key_cur == 1 && my.x < 450)
 {
 ship_speed.x = 30 * time;
 }
 if (key_cul == 1 && my.x > -450)
 {
 ship_speed.x = -30 * time;
 }
 ent_move (nullvector, ship_speed);
 camera.x = my.x;
 camera.y = my.y + 200;

 if (key_space == 1)
 {
 fire_rocket();
 }
 if (key_ctrl == 1)
 {
 fire_bomb();
 }
 wait (1);
 }
}

The camera can pass through walls, is tilted down and rotated by 90 degrees so that it points in the right direction, 700 quants above the player. I have measured the y coordinate = 2975 (where the level ends) in Wed. You should put an invisible, passable (or not) entity in Wed and compare its y with player's y. The ship (controlled by the player) moves upwards all the time because its ship_speed.y is positive all the time. If we press the arrows keys player's speed is doubled (key up) or halved (key down). The ship can move to the left and right as long as its x is bigger than -450 and smaller than 450.

If you press space the ship will fire rockets; press ctrl to fire bombs:

function fire_rocket()
{
 exclusive_global;
 while (key_space == 1) {wait (1);}
 if (player == null) {return;}
 vec_set (temp, player.pos);
 temp.y += 40;
 create (<rocket.mdl>, temp, rocket_moves);
}

We don't allow auto fire (it wouldn't be fair) and of course that we can't fire rockets if the player is dead (player = null). The rockets are created 40 quants above the player (we store player's position in temp, we add 40 quants to player's y and then we create the rocket there). Let's take a look at the function that moves player's rockets:

function rocket_moves()
{
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 my.skill1 = 0;
 rocket_speed.x = 0;
 rocket_speed.y = 80 * time;
 rocket_speed.z = 0;
 while (my.skill1 < 10)
 {
 my.skill1 += time;
 ent_move (nullvector, rocket_speed);
 wait (1);
 }
 remove me;
}

The rocket moves in the direction of the player, much faster than the player (it would collide with the player if its speed would be smaller than player's speed). A good thing to do is to destroy the rocket after a certain distance. We don't want to fire our guns at the beginning of the level and have all the enemies dead in the entire level because our rockets made it through the level to its end - and we don't want to loose performance by letting our rockets to fly on their own in the level. This is why we set skill1 to 0 for every rocket and then we increase it depending on the frame rate. When skill1 > 10, the rocket will disappear.

function fire_bomb()
{
 exclusive_global;
 while (key_ctrl == 1) {wait (1);}
 if (player == null) {return;}
 create (<bomb.mdl>, my.pos, bomb_moves);
}

Function fire_bomb is simpler than fire_rocket so I won't discuss it here. Do you remember that I have created the rocket 40 quants above the player? I could have created the bomb 100 quants below the player but I wanted to show you a different technique that prevents the bomb from colliding with its creator at the moment of creation. Let's take a look at the function that moves player's bomb:

function bomb_moves()
{
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 my.skill1 = 0;
 bomb_speed.x = 0;
 bomb_speed.y = ship_speed.y;
 bomb_speed.z = -10;
 while (my.skill1 < 100)
 {
 if (my.skill1 < 5)
 {
 my.passable = on;
 }
 else
 {
 my.passable = off;
 }
 my.skill1 += time;
 ent_move (nullvector, bomb_speed);
 wait (1);
 }
 remove me;
}

The bomb is destroyed when its skill1 is bigger than 100. You see that bomb_speed.z = -10; sounds fair because the bomb moves downwards but what's with that bomb_speed.y = ship_speed.y? If the player moves with the lightning speed (up is pressed) the bombs inside the ship are moving with the same lightning speed so their inertia should move them in front of their launching position. If the player presses down, the bomb should touch the ground close to its launching position. Of course that there isn't any bomb inside the ship but only you and I know this - right? This tiny line of code takes care of that.

if (my.skill1 < 5)
{
 my.passable = on;
}
else
{
 my.passable = off;
}

The bombs are created at player's position so they would collide with their creator (the player). This time I'm making the bombs passable for a short period so they can get out of the player and then I set their passable flag to off.

Let's take a look at the bad guys:

action enemy1
{
 my.z = player.z; // make sure that it collides with the player and its rockets
 my.skill2 = 1;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;

We want to make sure that enemy1 (and most of all, its rockets) can collide with the player so we set its z position at player's z position. This means that we can place enemy1 ship at any height in Wed - they'all be aligned at player's height. Enemy1 is a bad guy so we're setting its skill2 to 1 (we check this in function explode_me(), remember?)

 while (player != null)
 {
 if (abs(vec_dist (my.x, player.x)) < 500)
 {
 vec_set (my.skill10, player.x);
 vec_sub (my.skill10, my.x);
 vec_to_angle (my.pan, my.skill10);

 my.pan += 90;
 if (my.y > player.y)
 {
 create (<bullet1.mdl>, my.pos, bullet1_moves);
 }
 }
 waitt (16);
 }
}

The enemy1 will move only if the player is still alive (player != null). When the player comes closer than 500 quants to enemy1, the enemy will rotate (change its pan angle) and fire one bullet per socond - waitt (16). We are adding 90 degrees to the ship to make sure that we fire the bullets in the right direction - we are using a level and a camera that are rotated by 90 degrees. Enemy1 will fire only if the player is below it. The function that moves enemy1's bullet is:

function bullet1_moves()
{
 my.pan = your.pan;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 my.skill1 = 0;
 e1bullet_speed.x = 0;
 e1bullet_speed.y = -30 * time;
 e1bullet_speed.z = 0;
 while (my.skill1 < 20)
 {
 if (my.skill1 < 2)
 {
 my.passable = on;
 }
 else
 {
 my.passable = off;
 }
 my.skill1 += time;
 ent_move (e1bullet_speed, nullvector);
 wait (1);
 }
 remove me;
}

The first line sets bullet's pan angle to enemy1's (creator's) pan angle. The bullet moves downwards and it will remove itself after a certain period of time. We are making the bullet passable at first to prevent it from colliding with its creator. I have used this trick about an year ago to get rid of an annoying bug in the templates; if you were creating an enemy that was shooting rockets, it used to shot himself dead because the rockets were colliding with its body. The bullet moves in the direction set by its own pan angle; we aren't using ent_move (nullvector, e1bullet_speed) but ent_move (e1bullet_speed, nullvector).

Finally, enemy2 aka the cannon:

action enemy2
{
 my.z = -270;
 my.skill2 = 1;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 while (player != null)
 {
 if (abs(my.x - player.x)+ abs(my.y - player.y) < 400) // player comes close to enemy1
 {
 create (<bullet2.mdl>, my.pos, bullet2_moves);
 }
 waitt (16);
 }
}

I'm using a simple trick to align all the cannons to the floor level (I have got z = -270 in Wed for this level) and I'm setting skill2 to 1 (that's a bad entity, too). Enemy2 starts shooting when the player is near; I couldn't use vec_dist here because the distance between enemy2 and the player is pretty big - the cannons are placed on the ground and the player is placed up in the sky. The cannons will fire every second, too.

Here's the last function - it moves enemy2's bullet but there's nothing special with it:

function bullet2_moves()
{
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = explode_me;
 my.skill1 = 0;
 e2bullet_speed.x = 0;
 e2bullet_speed.y = 0;
 e2bullet_speed.z = 40 * time;
 while (my.skill1 < 100)
 {
 if (my.skill1 < 5)
 {
 my.passable = on;
 }
 else
 {
 my.passable = off;
 }
 my.skill1 += time;
 ent_move (nullvector, e2bullet_speed);
 wait (1);
 }
 remove me;
}

This game template can (and should) be improved: you can make the bombs explode when they hit the ground, compute the "real" angles between the player and the enemy bullets to make sure that every shot can be deadly :) and so on.

Eclipse code

One of the new features that was presented in AUM5 is the ability to change the color for the sky and the scene map. This helps us to get smooth day / night transitions. I thought that if I write some simple day / night code, none of my readers will sit in his chair and wait for 24 hours to test if it works fine. I have decided to go for something a little more complicated but more spectacular; the eclipse happens every two minutes (with the speeds set by me in the test level) and lasts for a few seconds. If you miss the eclipse or if you don't want to wait for another two minutes to see it, press tab and type moon_speed = 1 at the console. This works fine when you start the level - if the sun has moved too much you'll have to find another value.

entity* moon_pnt;
entity* sun_pnt;
var sun_radius;
var sun_speed;
var moon_radius;
var moon_speed;

We have to set two pointers for the moon and the sun; in fact we don't need the pointer to the sun (we can use the my pointer for that) but it makes the things easier for you. The radius for the sun and the moon (their orbits) are set automatically when you place the planets in Wed; their speeds are set with their skill1.

The action for the sun is the most complex:

action sun
{
 sun_pnt = me;
 qLensFlare = 0;
 mouseview = 5;
 camera.ambient = 100;
 my.unlit = on;
 my.ambient = 100;
 my.bright = on;
 my.flare = on;
 while (player == null) {wait (1);}
 while (moon_pnt == null) {wait (1);}
 sun_radius = vec_dist (my.x, player.x);

After the first line is executed, the sun will be known as sun_pnt and can be accesed from any other action or function. We turn the template lens flares off (if lflare.wdl is included in your project, otherwise you'll have to comment this line). The variable that controls the mouse sensitivity is named mouseview - we increase its value. One way to control the brightness for in the whole level is to modify the camera.ambient - this will work on all the surfaces, with all the models and entities and so on. We are setting camera.ambient to 100 for now (so we start with a bright level). The flags bright and flare used in conjunction will blend the sun over the background. We wait for the player and for the moon to be created and then we get the sun radius from its position related to player's starting position in Wed.

 while (1)
 {
 my.x = player.x + sun_radius * sin (sun_speed);
 my.y = player.y + sun_radius * cos (sun_speed);
 my.z = sun_radius * ((moon_pnt.z - (player.max_z - player.min_z) * 0.7) / moon_radius);

 vec_set (temp, player.x);
 vec_sub (temp, sun_pnt.x);
 vec_to_angle (sun_pnt.pan, temp);

 my.skill20 = ang(sun_pnt.pan - moon_pnt.pan);

 if (my.skill20 > -6 && my.skill20 < 6)
 {
 camera.ambient = 16.6 * abs(my.skill20); // 100:6
 scene_color.red = 42 * abs(my.skill20); // 255:6
 scene_color.green = 42 * abs(my.skill20);
 scene_color.blue = 42 * abs(my.skill20);
 sky_color.red = 42 * abs(my.skill20);
 sky_color.green = 42 * abs(my.skill20);
 sky_color.blue = 42 * abs(my.skill20);
 }
 sun_speed += my.skill1 * time;
 wait (1);
 }
}

The sun moves on a circle who's center is the player. If the player (blue dot) moves, the sun and the moon will move with him too. I did that because we don't want to create an enormous level and we have to fool the player that the distance between him and the planets is huge. If we wouldn't use this trick, the player would see that the distance between him and the planets gets smaller as he approaches them.

[image: image4.jpg]

Let's take a look at this line:

sun.z = sun_radius * (moon.z - player.z) / moon_radius;

[image: image5.jpg]my.z (sun.z)

/ ﬁ
moon o
o d
%

player.z

You won't find the line above in daynight.wdl - I have simplified it a little. We want to make sure that the moon can "block" the sun view regardless of player's position, so me lift (or lower) the sun depending on player's position. If you take a look at the picture in the left can you imagine what happens if the player comes closer to the moon (look at the dashed line): the eclipse can't happen because the sun would have to be lifted much higher - that's what that line does. We haven't finished with this: you can see that the player looks with his eyes (picture on the right) so we have to compute the approximate height of the eye. I have used a simple (player.max_z - player.min_z) * 0.7 that computes player's height and multiplies it by 0.7 - you should play with this value. Here's the result (remember that my is the sun):

my.z = sun_radius * ((moon_pnt.z - (player.max_z - player.min_z) * 0.7) / moon_radius);

The sun is rotated so that it always faces the player using a simple vec_to_angle instruction. We are using sun's skill20 to keep the difference between sun's and moon's pan angles, like in the picture.

[image: image6.jpg]

If skill20 is bigger than -6 and smaller than 6 it's eclipse time! Of course that you will have to modify these values in your level depending on the size of your planets, their distance to the player and so on. We are modifying scene_color, sky_color and camera.ambient to get a good looking eclipse.

Here's the action associated to the moon:

action moon
{
 moon_pnt = me;
 my.unlit = on;
 my.bright = on;
 while (player == null) {wait (1);}
 moon_radius = vec_dist (my.x, player.x);
 while (1)
 {
 my.x = player.x + moon_radius * sin (moon_speed);
 my.y = player.y + moon_radius * cos (moon_speed);

 vec_set (temp, player.x);
 vec_sub (temp, moon_pnt.x);
 vec_to_angle (moon_pnt.pan, temp);

 moon_speed += my.skill1 * time;
 wait (1);
 }
}

All the lines in this action can be found (and have been explained) in action sun.

Pacmen

I remember myself playing Pacman on a Sinclair Spectrum computer. These were the days! If you were a programmer, you had to make sure that your game has less than 48kb - or it wouldn't fit in the memory! Pacmen uses a "little" more memory - it is a Pacmen (several men :) not Pacman.

Function main has nothing special in it; let's take a look at the action that drives our hero:

action pacman
{
 player = me;
 my.enable_entity = on;
 my.enable_push = on;
 my.enable_impact = on;
 my.event = kill_me; // here's what happens on collision with enemies
 camera.diameter = 0; // camera can pass through walls
 camera.tilt = -90; // looks down
 camera.z = my.z + 1000; // 1000 quants above the player
 pacman_speed.y = 0;
 pacman_speed.z = 0;

Pacman is sensitive to other entities; if it collides / is run over by enemies, its kill_me event is triggered. The camera can pass through walls, looks down, moves with the player and is placed 1000 quants above the player.

Pacman and its enemy are using invisible "antennas" (markers) to detect their environment and act like smart creatures. I have used this technique in my first AI demo in AUM. In this picture you can see the pink antennas (run the game with pacmen -d markers if you want to see them too):

[image: image7.jpg]

We are using four markers for pacman and four markers for the enemy, like below:

[image: image8.jpg]my.y + width
my.x - width ° my.x+width
my.y + width

B =markers

= pacman
(enemy)

Let's see what's with these antennas; I'll explain what's happening with the left marker (the code for the other markers is the same):

 while (player != null)
 {
 motion_type = 0;

As long as the player is alive (player != null) we reset motion_type (more on that later). We are using rotated coords for all the markers because the player and enemy are rotated models, too.

 player_left.x = my.x;
 player_left.y = my.y + width;
 player_left.z = my.z;
 result = content(player_left);
 if (result == content_solid) {motion_type += 1;}
...

We check the content of the player_left marker and if it is in solid, we add 1 to motion_type. If player_right == content_solid -> motion_type += 2, player_down == content_solid -> motion_type += 4,
player_up == content_solid -> motion_type += 8. I chose these binary values (1, 2, 4, 8) to make sure that they represent unique combinations of numbers. If the markers for right and up are in solid, motion_type will be 2 + 8 = 10 and this is the only combination who's result will be equal to 10. Look at the table below to see all the combinations:

[image: image9.jpg]motion_type

markers in solid

Pacman can move

0 none Teft, right, up, down
1 Teft right, up, down
2 right Teft, up, down
3 Teft, right up, down
4 down Teft, right, up
5 Teft, down right, up
6 right, down Teft, up
7 Teft, right, down up
] up Teft, right, down
9 Teft, up right, down

10 right, up Teft, down

1 Teft, right, up down

12 up, down Teft, right

13 Teft, up, down right

14 right, up, down Teft

15 Teft, right, up, down nowhere

It is clear that motion_type = 15 can never happen, but I wanted to show you all the possibilities.

So we have four markers, we check their content and depending on the result, we allow them (pacman and enemy) to move only if they choose a direction where the road is "clear".

 if (motion_type == 0)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cud == 1) {my.pan = 180;}
 if (key_cur == 1) {my.pan = 270;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 1)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cud == 1) {my.pan = 180;}
 if (key_cur == 1) {my.pan = 270;}
 }

 if (motion_type == 2)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cud == 1) {my.pan = 180;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 3)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cud == 1) {my.pan = 180;}
 }

 if (motion_type == 4)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cur == 1) {my.pan = 270;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 5)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cur == 1) {my.pan = 270;}
 }

 if (motion_type == 6)
 {
 if (key_cuu == 1) {my.pan = 0;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 7)
 {
 if (key_cuu == 1) {my.pan = 0;}
 }

 if (motion_type == 8)
 {
 if (key_cud == 1) {my.pan = 180;}
 if (key_cur == 1) {my.pan = 270;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 9)
 {
 if (key_cud == 1) {my.pan = 180;}
 if (key_cur == 1) {my.pan = 270;}
 }

 if (motion_type == 10)
 {
 if (key_cud == 1) {my.pan = 180;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 11)
 {
 if (key_cud == 1) {my.pan = 180;}
 }

 if (motion_type == 12)
 {
 if (key_cur == 1) {my.pan = 270;}
 if (key_cul == 1) {my.pan = 90;}
 }

 if (motion_type == 13)
 {
 if (key_cur == 1) {my.pan = 270;}
 }

 if (motion_type == 14)
 {
 if (key_cul == 1) {my.pan = 90;}
 }

Now if the following line won't give you a headache then nothing else will:

 if ((my.pan == 0 && motion_type < 8) || ((my.pan == 90) && (motion_type % 2 != 1)) ||
 (my.pan == 180 && motion_type != 4 && motion_type != 5 && motion_type != 6 && motion_type != 7 &&
 motion_type != 12 && motion_type != 13 && motion_type != 14) || (my.pan == 270 && motion_type != 2 &&
 motion_type != 3 && motion_type != 6 && motion_type != 7 && motion_type != 10 && motion_type != 11 &&
 motion_type != 14))
 {
 ent_move (pacman_speed, nullvector);
 }

Well, this line is pretty simple: it stops the movement when the markers are in solid because we don't want Pacman to stick its nose into the wall, isn't it? If Pacman is pointing its "nose" in the right direction (the road is clear) ent_move is executed so Pacman moves. I have used several barbarian techniques in this instruction: motion_type % 2 != 1 replaces motion_type != 1 && motion_type != 3 && motion_type != 13 (all the odd numbers between 1 and 13).

The action attached to the enemy is similar; the only big difference is that we generate a random number and depending on its value we set the direction for the enemy.

[image: image10.jpg]

If you look at the first example, the enemy is coming from right to the left; the available ("free") directions are up and right. The enemy came from the right so it wouldn't look that clever if it would bounce off the wall and return where it came from so this possibility has been disabled in enemy's code. In this case, the enemy will go up. In the second example, the enemy is coming going up and it won't return down, but move to the left because I set this limit in its code for this situation.

The enemy can pass through dots so I am using this line in its action (the dots are passable):

move_mode = ignore_passents;

Here's the action attached to every dot:

action dot
{
 my.push = -1;
 my.z = player.z;
 my.passable = on;
 while (my != null && player != null)
 {
 if (vec_dist (my.x, player.x) < 30)
 {
 play_sound (eatdot_snd, 100);
 ent_remove (my);
 score += 10;
 }
 wait (1);
 }
}

The dots are aligned to player's z; this way I don't need to make sure that I place them at the proper height in Wed. If the player comes closer than 30 quants, the dot will be eaten and the score will be increased by 10.

The function that kills the player is simple; player's scale is lowered 10 times and then the player is removed.

function kill_me()
{
 exclusive_global;
 play_sound gotme_snd, 100;
 while (my.scale_x > 0.1)
 {
 my.scale_x -= 0.1 * time;
 my.scale_y = my.scale_x;
 my.pan += 1 / my.scale_x;
 wait (1);
 }
 waitt (2);
 ent_remove (me);
}

If you want to move to the next level, check the score in a loop; score = 600 can take you to the next level if you have 60 dots in the level.

What about "real" AI? This enemy of yours does nothing but moves correctly in the level! This part is easy and is left as an exercise for you. Pacmen has four different enemies - I've coded the dumb one. Don't worry - I'll explain how to code the most Pac-thirsty enemy right here:

[image: image11.jpg]g
K]
2

enemy

The enemy must make sure that its x and y coordinates are equal with player's x, y coords (this means that the enemy has "got" the player). When the enemy reaches the 1st red point, it can't come closer to the player - it must move to the right, towards the 2nd point. When it arrives there its motion type has changed; the enemy knows that by moving upwards the distance between it and the player is getting smaller (on y) so it will move towards the 3rd point (we aren't using any random value here). By choosing to move towards the 4th point (again, not a "random" decision) the enemy knows that the distance between it and the player (on x) will get smaller. The 5th point can be a random decision or not, depending on player's position.

And you thought that creating a Pacman clone is easy!

Shooting switches / statues

This piece of code will show you how you can move to the next level only if you have destroyed a certain number of idols / statues / switches / whatever you want.

action statue
{
 my.enable_shoot = on;
 my.event = destroy_me;
 statues_left += 1;
 while (1)
 {
 if (vec_dist(my.x, player.x) < 50 || my.skill10 == 1)
 {
 play_sound (destroyed_snd, 70);
 statues_left -= 1;
 _gib (10);
 ent_remove (me);
 return;
 }
 wait (1);
 }
}

Every statue is sensitive at shooting; their number is counted at startup. If the player comes close to a statue (or shoots it) a sound is played, the number of statues is decreased, the statue breaks in pieces and disappears.

What about shooting? Here's the event that is triggered when the statue is shot:

function destroy_me()
{
 if (event_type == event_shoot)
 {
 my.skill10 = 1;
 }
 else
 {
 my.skill10 = 0;
 }
}

It doesn't look like having something to do with the statues, isn't it? If you look at action statue above you'll see that the statue is destroyed if the player comes close to it OR if skill10 = 1 - that's what the event does.

We must have another entity that takes us to the next level on impact:

action next_level
{
 my.enable_impact = on;
 my.event = change_level;
}

When we impact with this entity, its change_level event will be triggered:

function change_level()
{
 if (statues_left != 0) {return;}
 me = null;
 beep; beep;
// load_level <next.wmb>;
 wait (2);
}

You can see that we can't move to the next level if we haven't destroyed all the statues. You will have to remove the comment for the load_level line and change the name to your_next_level.wmb

Menu code

Many of you have requested some menu code so I have decided to create a simple, fully functional menu example. This menu has the following buttons: New Game, Sound Volume, Video Resolution, Quit. I know that you might need Save, Load, etc but all these functions are implemented in the template menu and you can add them (and their respective buttons) to my code.

I wanted to give you the chance to play with the menu in a standalone project so I have created a simple "game" - a level where you get to stare at some eye-check sprite. If you're confused, please think what must have been inside my head when I have decided to pick up an example like that! The good thing is that you can start the "game", adjust the sound level (and hear the difference), change the resolution (and see it being changed) and quit the game.

The game starts running at 800x600 pixels, in 16 bit mode.

var video_mode = 7; // 800x600
var video_depth = 16; // 16 bit mode

First of all, we need to define some bmaps; we are using two bitmaps for every button and a single bitmap for every panel. The names are pretty suggestive so I won't make any comments here.

bmap main_pcx = <main.pcx>;
bmap new1_pcx = <new1.pcx>;
bmap new2_pcx = <new2.pcx>;
bmap sound1_pcx = <sound1.pcx>;
bmap sound2_pcx = <sound2.pcx>;
bmap video1_pcx = <video1.pcx>;
bmap video2_pcx = <video2.pcx>;
bmap quit1_pcx = <quit1.pcx>;
bmap quit2_pcx = <quit2.pcx>;
bmap maincursor_pcx = <maincurs.pcx>;
bmap sound_pcx = <sound.pcx>;
bmap video_pcx = <video.pcx>;
bmap slider_pcx = <slider.pcx>;

I'm using two levels: introlev.wmb is a dummy level, a simple hollowed block with some colored lights inside it and level1.wmb is the first (and only) game level.

string introlevel_wmb = <introlev.wmb>;
string level1_wmb = <level1.wmb>;

The panel definitions are similar; main_pan has four buttons on it; sound_pan and video_pan don't have buttons, but sliders.

panel main_pan
{
 bmap = main_pcx;
 layer = 20;
 pos_x = 220;
 pos_y = 200;
 button = 50, 65, new1_pcx, new1_pcx, new2_pcx, null, start_game, mouse_over;
 button = 50, 115, sound1_pcx, sound1_pcx, sound2_pcx, null, set_volume, mouse_over;
 button = 50, 165, video1_pcx, video1_pcx, video2_pcx, null, set_resolution, mouse_over;
 button = 50, 215, quit1_pcx, quit1_pcx, quit2_pcx, null, quit_game, mouse_over;
 flags = d3d, overlay, refresh;
}

panel sound_pan
{
 bmap = sound_pcx;
 layer = 20;
 pos_x = 160;
 pos_y = 240;
 hslider = 60, 95, 200, slider_pcx, 0, 100, sound_vol;
 flags = d3d, overlay, refresh;
}

panel video_pan
{
 bmap = video_pcx;
 layer = 20;
 pos_x = 160;
 pos_y = 240;
 hslider = 60, 95, 200, slider_pcx, 4, 8, video_value;
 flags = d3d, overlay, refresh;
}

If you don't understand what I'm doing with the buttons and sliders, please read their definitions in the manual and compare what I did with the manual.

Let's take a look at:

function main()
{
 on_esc = null;
 level_load (introlevel_wmb);
 wait (2);
 game_init(); // checks the Esc key state and changes the panels if needed
 main_pan.visible = on; // show the main panel
 mainmenu_mouse(); // and give me a cursor to play with
 vec_set (camera.pos, nullvector); // move camera to the origin
 while (game_started == 0) // we haven't pressed New yet
 {
 camera.pan += 0.3 * time; // rotate the camera gently
 camera.tilt += 0.1 * time;
 camera.roll += 0.05 * time;
 wait (1);
 }
}

If you're starting a new project from scratch Esc will exit the engine. We want to use Esc to bring the main menu on, so the first line in main deactivates the built-in (exit) Esc function. We load the dummy level, we wait two frames to make sure that it has loaded and then we run the game_init() function (more on that a little later). Main_pan is made visible, mainmenu_mouse() give us a cursor to play with, the camera is moved in the origin and starts to rotate by changing its pan, tilt and roll angles.

function mainmenu_mouse ()
{
 mouse_mode = 2;
 mouse_map = maincursor_pcx;
 while (game_started == 0)
 {
 mouse_pos.x = pointer.x;
 mouse_pos.y = pointer.y;
 wait (1);
 }
}

The first lines in mainmenu_mouse() show the cursor and change it to our maincursor_pcx. We can move the cursor as long as the game hasn't started using the predefined pointer.x and pointer.y.

Let's get back to:

function game_init()
{
 while (1)
 {
 main_pan.pos_x = (screen_size.x - bmap_width(main_pcx)) / 2;
 main_pan.pos_y = (screen_size.y - bmap_height(main_pcx)) / 2;
 sound_pan.pos_x = (screen_size.x - bmap_width(sound_pcx)) / 2;
 sound_pan.pos_y = (screen_size.y - bmap_height(sound_pcx)) / 2;
 video_pan.pos_x = (screen_size.x - bmap_width(video_pcx)) / 2;
 video_pan.pos_y = (screen_size.y - bmap_height(video_pcx)) / 2;

Every panel can be moved using its pos_x and pos_y parameters. We have provided some initial pos_x and pos_y values to our panels, but the panel needs to change its position to make sure that it is positioned in the center of the screen at any resolution. Take a look at the picture below to see how this works:

[image: image12.jpg]-y a.i,
- R

— bmap_width

screen_size.x

 if (key_esc == 1)
 {
 while (key_esc == 1) {wait (1);}
 if (main_pan.visible == on)
 {
 main_pan.visible = off;
 mouse_mode = 0;
 }
 else
 {
 if (sound_pan.visible == off && video_pan.visible == off)
 {
 main_pan.visible = on;
 game_started = 0;
 mainmenu_mouse();
 }
 }
 if (sound_pan.visible == on)
 {
 sound_pan.visible = off;
 main_pan.visible = on;
 }
 if (video_pan.visible == on)
 {
 video_pan.visible = off;
 main_pan.visible = on;
 if (int (video_value != video_mode))
 {
 switch_video (video_value, 16, 1);
 }
 }
 }
 wait (1);
 }
}

If we press Escape, we have to wait for its release (while loop) because we don't want 50-100 menu changes a second (the changes triggered by Esc would be executed every frame). If main_pan is visible, we remove it and we hide the cursor. If main_pan isn't visible we check to see if sound_pan or video_pan are visible. If none of them is visible (there's no panel on screen) we make main_pan visible, we stop the game and we show the cursor. If sound_pan is visible, we hide it and show main_pan; if video_pan is visible, we do the same thing with it BUT if the resolution has changed we switch the video mode. Our video slider can deliver non-integer values, so we use int (video_value).

I'm using a small action: eye_checker to keep the sprite oriented and a small function mouse_over() to play a sound when the mouse is over one of the buttons:

action eye_checker
{
 my.oriented = on;
}

function mouse_over()
{
 play_sound (mouse_snd, 70);
}

The long awaited moment has finally arrived: we get to see the functions associated to the menu buttons:

function start_game()
{
 main_pan.visible = off;
 game_started = 1;
 mouse_mode = 0;
 level_load (level1_wmb);
 wait (2);
 camera.z = 220;
 camera.tilt = -90;
}

Function start_game() will be executed every time we press the New button. This function hides the main_pan, sets game_started to 1, shows the cursor, loads the game level and then sets the camera.z position and tilt angle.

function set_volume()
{
 main_pan.visible = off;
 sound_pan.visible = on;
}

Function set_volume() hides main_pan and shows sound_pan. If you take a look at the hslider definition in sound_pan, you will see that by changing the slider position we modify sound_vol; this is a predefined variable that changes the volume for all the wav sounds in the game. Move the slider, press Esc and you will hear the difference when you move the mouse over the main_pan buttons.

function set_resolution()
{
 main_pan.visible = off;
 video_pan.visible = on;
}

Function set_resolution hides main_pan and shows video_pan. When you move the slider, video_value is changing and when you press Esc the resolution will be changed - see the code in game_init()

function quit_game()
{
 exit;
}

This function will exit the engine right away.

Terrain deformation

Vec_for_mesh and vec_to_mesh were some of Aum3's hot features. Take a look at this code that generates falling bombs (ok, I've used a rocket model) that create craters when they impact with a terrain mesh.

I have created another standalone project; the example runs at 800x600x16bit, Vertex_dist[1090] is an array that will hold the distance between every vertex and hit_coords
var video_mode = 7; // 800x600
var video_depth = 16; // 16 bit mode
var vertex_dist[1090];
var hit_coords;

Function main loads our test level and sets a weird camera position (if you don't like this position, press zero and move the camera where you want it)

function main()
{
 level_load (terrain1_wmb);
 wait (2);
 camera.x = 345;
 camera.y = -345;
 camera.z = 300;
 camera.pan = 135;
 camera.tilt = -40;
}

I have added a small model in Wed; its associated action generates random falling bombs:

action bomb_launcher
{
 my.passable = on;
 while (1)
 {
 temp.x = my.x + 200 - random(400);
 temp.y = my.y + 200 - random(400);
 temp.z = my.z;
 bomb = ent_create (bomb_mdl, temp, move_bomb);
 waitt (40); // create a new bomb every 2.5 seconds
 }
}

The first line in this action prevents the bomb from getting stuck inside its creator. A new bomb is generated every 2.5 seconds, in a 400x400 quants area. Every bomb moves according to its move_bomb function:

function move_bomb()
{
 my.enable_entity = on;
 my.enable_block = on;
 my.event = explode_me;
 bomb_speed.x = 0;
 bomb_speed.y = 0;
 bomb_speed.z = -5;
 bomb_speed *= time;
 while (my != null)
 {
 ent_move (nullvector, bomb_speed);
 wait (1);
 }
}

You can see that the bomb is sensitive to entities and level blocks, has a negative z speed and moves until its explode_me event is triggered:

function explode_me()
{
 waitt (2);
 play_entsound (me, bumm_wav, 200);
 ent_remove (me);
}

We need to wait a little to be able to store the impact coords in hit_coords. We play an explosion sound and we remove the bomb.

The terrian does all the job when its create_crate event is triggered:

action terrain
{
 terrain1 = me;
 my.enable_impact = on;
 my.event = create_crate;
}

function create_crate()
{
 vec_set (hit_coords, bomb.pos);

First of all, we store the impact coords before the bomb disappears

 wait (1);
 my.skill1 = 1;
 my.skill2 = 1500;

We set the vertex_dist index to 1 and skill2 to a huge distance; this distance will be much smaller for the vertices that are closer and closer to the impact point.

 while (my.skill1 < 1090) // vertices 1...1089 for a 33x33 grid
 {
 vec_for_mesh (temp, terrain1, my.skill1);
 vertex_dist [my.skill1] = vec_dist (hit_coords.x, temp.x);
 if (vertex_dist[my.skill1] < my.skill2) // this vertex is closer than the others?
 {
 my.skill2 = vertex_dist[my.skill1]; // then it might be the one!
 }
 my.skill1 += 1; // next vertex
 }

My terrain has a 33x33 grid with 1089 vertices; my.skill1 will be set to 1, 2, 3, ... 1089 in the while loop above. Vec_for_mesh sets temp to vertex 1, 2, 3, ... and we store the distance between vertex1 and hit_coords in vertex_dist[1], the distance between vertex2 and hit_coords in vertex_dist[2] and so on, like in the picture below:

[image: image13.jpg]

I couldn't draw blue arrows for all the vertices, but it looks like vertex18 is the winner in my picture, so the distance between vertex18 and hit_coords will be stored in skill2.

Now we need to find out the index for the winner, because this index will be passed to function deform(vertex_number).

 my.skill1 = 1;
 while (my.skill1 < 1090)
 {
 if (my.skill2 == vertex_dist[my.skill1])
 {
 my.skill3 = my.skill1;
 }
 my.skill1 += 1;
 }
 deform (my.skill3);
}

This time we are searching for the smallest vec_dist stored in vertex_dist and when we find it we store the index in skill3 - this is the vertex that will be moved inwards. It is clear that these while loops can be optimized but they run so fast (without wait) and it isn't necessary to do it.

The final function is:

function deform(vertex_number)
{
 vec_for_mesh(temp, terrain1, vertex_number);
 vec_scale (temp, 0.7);
 vec_to_mesh (temp, terrain1, vertex_number);
}

We set vertex_number as an argument for vec_for_mesh, so temp will be set to vertex_number's coords. Temp will be scaled to 70% of its value and then vec_to_mesh will deform the vertex that was closest to hit_coords.

 Radar

One good thing about the old raycasting engines was the you could easily have a radar (call it automap if you want to). This piece of code will allow you to see the whole map on a panel and more than that, what's moving on it.

 First of all I have got these values (in Wed) for the level boundaries in the office.wmp level:

var level_minx = -1800;
var level_maxx = 1800;
var level_miny = -1500;
var level_maxy = 1500;

Feel free to choose approximate values because if you are using a small radar panel it won't matter than much if level_minx is -1800 or -1824.

 The idea behind the radar code is pretty simple: we use a panel for the map (a screenshot of the top view in Wed, without unnecessary geometry on it) and several small panels with higher layers for the entities that move on the panel.

panel radar_pan
{
 bmap = radar_map;
 layer = 20;
 pos_x = 0;
 pos_y = 0;
 flags = overlay, refresh, d3d, visible;
}

panel entity1_pan
{
 bmap = pentity_map; // the player
 layer = 21;
 pos_x = 0;
 pos_y = 0;
 flags = transparent, overlay, refresh, d3d;
}
...

panel entity5_pan
{
 bmap = entity_map;
 layer = 21;
 pos_x = 0;
 pos_y = 0;
 flags = transparent, overlay, refresh, d3d;
}

You can see that radar_pan (the level) has layer = 20 and the other panels (the entities) have layer = 21 so they will be displayed over radar_pan. I have only used 5 entity panels in this example, but you can add as many panels / entities as you want.

Every entity that wants to be displayed on the radar must include this line in its action / function (better make it the first line):

radarx_ptr = me; x = 1..5 in my example

The player has a radar1_ptr = me line in its player_prog action, the patrolling guard has a radar2_ptr = me line in its patrol_prog action and so on. Btw, the panel for the player (entity1_pan) uses a different bitmap (the player is blue and all the other entities are red on the radar).

We need to start the radar by running

function init_radar()
{
 while (1)
 {
 if (radar1_ptr != null)
 {
 entity1_pan.visible = on;
 entity1_pan.pos_x = scalex * (abs(radar1_ptr.x - level_maxx));
 entity1_pan.pos_y = scaley * (abs(radar1_ptr.y - level_miny));
 }
 ...

 if (radar5_ptr != null)
 {
 entity5_pan.visible = on;
 entity5_pan.pos_x = scalex * (abs(radar5_ptr.x - level_maxx));
 entity5_pan.pos_y = scaley * (abs(radar5_ptr.y - level_miny));
 }
 wait (1);
 }
}

If the entity will appear on the radar (the radarx_ptr pointer to it isn't null) we make its panel visible and we calculate its position on the radar. Let's take a look at this line:

entity1_pan.pos_x = scalex * (abs(radar1_ptr.x - level_maxx));

You know that you can move a panel on the screen by changing its pos_x and pos_y parameters; this is what we are doing here. For radar1_ptr.x = -1800 and level_maxx = 1800:

scalex * (abs(radar1_ptr.x - level_maxx)) = length_of_the_radar_bitmap (128 pixels) -> scalex = 128 / 3600 = 0.0355

I could have measured the length of the bitmap (using bmap_width and bmap_height) and get rid of scalex and scaley buy these parameters allow you to do a "fine tuning" to the radar. I'm using a similar formula for the y axis so I won't explain it here.

 Ok, I got your point but what if I have the same action for 5 monsters? I can't assign a single pointer to all of them!

 I see your point but I have the answer. Check a different flag (set a different skill value) for every monster and set the pointers this way:

if (my.flag1 == 1) {radar3_ptr = me;}
if (my.flag2 == 1) {radar4_ptr = me;}

This is what I did with the two elevators that appear in the office level (and on the radar, of course). I have zipped the doors.wdl and office.wdl that include all these changes, so you have a working example.

John Wayne

 Ever wanted to be like John Wayne? I'm pretty sure that he has learned to use the gun that well by shooting at small sized, cheap plates. With this standalone project you'll be able to do that too, using two pistols with stereo sound!

 Function main is always simple; please note that I have disabled the debug panel because I use WSAD for movement.

function main()
{
 on_d = null;
 level_load (johnwayne_wmb);
 wait (2);
 game_init();
}

But what's with this game_init function?

 function game_init()

{
 crosshair_pan.pos_x = screen_size.x / 2 - 8;
 crosshair_pan.pos_y = screen_size.y / 2 - 8;
 while (1)
 {
 if (mouse_left == 1)
 {
 crosshair_pan.visible = on;
 if (got_gun1 == 1 && got_gun2 == 0)
 {
 animate_right();
 snd_play (shoot_snd, 70, -100);
 ent_create (bullet_mdl, player.pos, move_bullet);
 }
 if (got_gun1 == 0 && got_gun2 == 1)
 {
 animate_left();
 snd_play (shoot_snd, 70, 100);
 ent_create (bullet_mdl, player.pos, move_bullet);
 }
 if (got_gun1 == 1 && got_gun2 == 1)
 {
 animate_right();
 snd_play (shoot_snd, 70, -100); // right speaker
 ent_create (bullet_mdl, player.pos, move_bullet);
 waitt (3);
 animate_left();
 snd_play (shoot_snd, 70, 100); // left speaker
 ent_create (bullet_mdl, player.pos, move_bullet);
 }
 while (mouse_left == 1) {wait (1);}
 }
 wait (1);
 }
}

First of all, game_init calculates the crosshair position; the bitmap for it has 16x16 pixels so we're substracting 8 pixels from the center of the screen. If the left mouse button (LMB) is clicked, the crosshair is made visible. I have associated 2 variables with the 2 pistols: got_gun1 = 1 means that I have got the right pistol and got_gun2 = 1 means that I have got the left pistol. It is pretty obvious what's happening when you fire one of the weapons; if you have picked up both pistols, the guns are shot using the new snd_play instruction which produces a nice stereophonic effect.

We don't want the player to be able to use autofire so we wait until the LMB is released.

This is a standalone project so I proudly present you world's shortest camera code:

action john_moves
{
 player = me;
 my.invisible = on;
 while (1)
 {
 vec_set (camera.pos, my.pos);
 camera.tilt += 20 * mouse_force.y * time;
 my.pan += 4 * (key_a - key_d) * time - 20 * mouse_force.x * time;
 camera.pan = my.pan;
 player_dist.x = 10 * (key_w - key_s) * time;
 player_dist.y = 0;
 player_dist.z = 0;
 ent_move(player_dist, nullvector);
 wait (1);
 }
}

John Wayne is played by (who else?) guard.mdl so I have decided to make it invisible. Use the keys WSAD to move the player and the mouse to look around. I know that this camera code hasn't got inertia so the movement is pretty crappy but I've told you that this is world's shortest camera code and more than that - who says that John Wayne had inertia at all?

Let's take a look at the code that is attached to the pistol models; I will explain what's happening with the pistol on the right because the code for the left pistol is the same:

action pistol1
{
 my.enable_impact = me;
 my.event = get_pistol1;
 while (my != null) // the gun wasn't picked up yet
 {
 my.pan += 3 * time;
 wait (1);
 }
}

function get_pistol1()
{
 wait (1);
 got_gun1 = 1;
 snd_play (gotgun_snd, 80, 0);
 ent_remove (me);
 right_pistol.visible = on;
}

The pistol is sensitive to impact and will rotate as long as it hasn't been picked up. When we impact with the pistol, its function get_pistol1 sets got_gun1, plays a sound, removes the pistol from the ground and enables the right_pistol entity:

entity right_pistol
{
 type = <eagled.mdl>;
 layer = 10;
 view = camera;
 x = 25;
 y = -10;
 z = -10;
}

This is a typical entity definition; left_pistol has y = 10 instead of y = -10 so it will appear on the other side of the screen. The pistols are animated using two simple while loops:

function animate_right()

{
 while (right_pistol.tilt < 5)
 {
 right_pistol.tilt += 5 * time;
 wait (1);
 }
 while (right_pistol.tilt > 0)
 {
 right_pistol.tilt -= 5 * time;
 wait (1);
 }
 right_pistol.tilt = 0;
}

When we fire one of the guns, the bullet starts from the origin of the player and moves towards the target using the move_bullet function:

function move_bullet()
{
 wait (1);
 my.invisible = on;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_me;
 my.passable = on;
 my.pan = camera.pan;
 my.tilt = camera.tilt;
 my.skill1 = 0;
 bullet_speed.x = 200;
 bullet_speed.y = 0;
 bullet_speed.z = 0;
 bullet_speed *= time;
 while (my.skill1 < 50)
 {
 if (my == null) {return;}
 if (my.skill1 < 0.1) // don't collide with the player
 {
 my.passable = on;
 }
 else
 {
 my.passable = off;
 }
 my.skill1 += 0.1 * time;
 ent_move (bullet_speed, nullvector);
 wait (1);
 }
 remove me;
}

The bullet can collide with other entities or with the walls and it will be removed if it hits something. The bullet is passable at the moment of creation so it won't hit John's body, but after a few frames its passable flag will be reset. This baby travels with 200 quants / tick!

Finally, the code for that weird stove - the plate_generator:

action plate_generator
{
 my.passable = on;
 while (1)
 {
 if (random(1) > 0.3)
 {
 ent_create (plate_mdl, my.pos, move_plate);
 }
 waitt (32);
 }
}

If random(1) > 0.3, a new plate is generated every two seconds. Let's take a look at the function that moves the plate:

function move_plate()
{
 wait (1);
 my.enable_impact = on;
 my.enable_block = on;
 my.event = destroy_plate;
 my.skill12 = (1 - random(2)) / 5;
 my.skill13 = (1 - random(2)) / 5;
 my.skill14 = 2 + random(1);
 plate_speed *= time;
 while (me != null)
 {
 my.roll += 1 * time; // uncomment this line to see some weird stuff
 ent_move (my.skill12, nullvector);
 my.skill14 -= 0.05 * time;
 wait (1);
 }
}

You can see that the plate will be removed when it is hit by a bullet or collides with a wall. I'm using a special technique here so please pay attention: my.skill12..14 are used as if they were a single variable with its xyz components. All you need to do is make sure that you start with the right skill (0, 3, 6, 9, 12, etc) and that you refer to the same skill when you use it as if it were a standard variable with 3 components (the way I did with the ent_move instruction). This is extremely useful because the skills are here and they'll use memory even if you don't use them. More than that, if you have 100 plates running in the level, you won't like to have 100 separate variables and 100 slightly modified actions.

function destroy_plate()

{
 wait (1);
 if (event_type == event_impact) // hit by a bullet
 {
 my.transparent = on;
 my.alpha = 100;
 while (my.roll < 1440) // 4 rotations
 {
 my.roll += 10 * time;
 my.alpha -= 0.7 * time;
 wait (1);
 }
 }
 ent_remove (me); // remove the plate (without tilting) if it hit the ground (event_block)
}

If the plate hits a wall or the ground, it is simply removed. If the plate is hit by a bullet, its roll angle is increased while its transparency is decreased until the plate disappears.

 Steroidz

Mike Bravo 23 calling base! There's a giant asteroid coming towards us! No, there are hundreds of them and they're all coming towards our ship!
If this isn't scary stuff then in must be Steroidz! Let's take a look at function main:

function main()
{
 fps_max = 40;
 level_load (steroidz_wmb); // dummy level
 wait (2);
 score = 0; // reset score
 asteroid_generator();
 display_lives();
}

We lock the frame rate to 40 and then we load the level (a huge mdl sphere and a tiny cube, otherwise it won't build!). When the level is loaded we reset the score and start generating asteroids and displaying the number of lives. We'll talk about these two functions a little later; let's take a look at the action that moves player's ship:

action players_ship
{
 my.dead = 0;
 my.metal = on;
 my.skill22 = 0; // reset the number of hits
 my.enable_impact = on;
 my.event = player_dies;
 player = me;
 while (camera == null) {wait (1);}
 while (my.dead == 0) // as long as the player isn't dead
 {
 player.tilt += 0.5 * (key_cuu - key_cud) * time;
 player.pan += 2 * (key_cul - key_cur) * time;
 ship_speed.x = 0.6 * key_space * time + max ((1 - time * 0.05), 0) * ship_speed.x;
 ship_speed.y = 0;
 ship_speed.z = 0;
 ent_move(ship_speed, nullvector);

 vec_set (temp, nullvector);
 vec_sub (temp, camera_distance);
 vec_to_angle (camera_angle, temp);
 camera_angle.roll = 0;

 vec_set (camera.x, camera_distance);
 vec_rotate (camera.x, my.pan);
 vec_add (camera.x, my.x);

 vec_set (camera.pan, my.pan);
 ang_rotate (camera.pan, camera_angle);

 vec_for_vertex(particles_left, my, 89);
 vec_for_vertex(particles_right, my, 83);

 if (key_space == 1)
 {
 effect (ship_particles, 2, particles_left, normal);
 effect (ship_particles, 2, particles_right, normal);
 if (shipsound_handle == 0)
 {
 snd_loop (ship_snd, 50, 0);
 shipsound_handle = result;
 }
 }
 else
 {
 snd_stop (shipsound_handle);
 shipsound_handle = 0;
 }

 if (key_ctrl == 1) // press ctrl to fire
 {
 if (my.skill35 == 0)
 {
 my.skill35 = 1; // disable autofire
 ent_create (rocket_mdl, player.pos, ship_rocket);
 snd_play (firerocket_snd, 80, 0);
 }
 }
 else
 {
 my.skill35 = 0; // enable fire again
 }

 wait (1);
 }
}

I have defined dead as skill20 so my.dead = 0 means my.skill20 = 0; skill20 will be set to 1 when the player is dead. The player is sensitive to impact and it will die after 5 hits; the number of hits is stored in skill22. I'm using the arrow keys (cursor up and down to tilt the ship, cursor left and right to pan it), space for thrust (includes inertia) and ctrl to fire.
We are rotating the camera towards the ship, adding the proper distance (specified in var camera_distance) and then we are rotating the camera using ang_rotate, capable of rotating an object (the camera in Steroidz) depending on the ship direction / angles.
If we press space, the engines generate particles and plays a sound in a loop. The proper engine vertices are those with numbers 89 and 83 (get these numbers in Med); the two vec_for_vertex lines set the two vars (particle_left and particle_right) to these vertex coordinates.
If we press Ctrl, we create a rocket at player's position; the function that runs the rocket is:

function ship_rocket()
{
 wait (1);
 my.ambient = 100;
 my.skill30 = 0;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_me;
 my.passable = on;
 my.pan = player.pan;
 my.tilt = player.tilt;

 my.skill12 = 100 * time;
 my.skill13 = 0;
 my.skill14 = 0;

 while (my != null) // as long as the rocket hasn't exploded
 {
 my.skill12 = 100 * time;
 my.skill30 += 0.1 * time;
 if (vec_dist (my.x, player.x) < 100) {my.passable = on;}
 // don't collide with the player
 else {my.passable = off;}
 if (my.skill30 < 100)
 {
 ent_move (my.skill12, nullvector);
 }
 else
 {
 ent_remove (me);
 }
 wait (1);
 }
}

The code is similar to the one used in the bow & arrow code. The rocket will move until it hits something (an asteroid, of course) but if it hasn't hit anything it will be removed after a certain period of time.
I have used a simple trick to create an infinite "playground" for our ship: I have placed a huge sphere in the level and I'm using a simple action to keep the player in the centre of the sphere (so when the player moves, the sphere moves with him in the same direction):

action sky_follows_player
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (1)
 {
 vec_set (my.pos, player.pos);
 wait (1);
 }
}

The sky must be passable because the asteroids have to pass through it and move towards the player. Let's get back to function asteroid_generator:

function asteroid_generator()
{
 while (1)
 {
 if (random(1) > 0.97)
 {
 asteroid_angle = player.pan + 30 - random(60); // -30...+30 degrees
 asteroid_pos.x = player.x + (5000 + random(5000)) * cos (asteroid_angle);
 asteroid_pos.y = player.y + (5000 + random(5000)) * sin (asteroid_angle);
 asteroid_pos.z = player.z + 300 - random(600);
 ent_create (asteroid_mdl, asteroid_pos, move_asteroid);
 }
 waitt (3);
 }
}

function move_asteroid()
{
 my.ambient = -50;
 my.metal = on;
 my.enable_entity = on;
 my.event = destroy_asteroid;
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp); // turn towards the player
 my.pan += 3 - random(6); // miss the player from time to time
 my.tilt += 1 - random(2);
 while (my != null)
 {
 my.roll += 5 * time;
 my.skill3 = 20 * time;
 my.skill4 = 0;
 my.skill5 = 0;
 ent_move(my.skill3, nullvector);
 wait (1);
 }
}

The asteroids are generated from time to time, when random(1) > 0.97, on a torus (a ring) that surrounds the player, like in the picture below.
[image: image14.jpg]grey = possible origin for asteroids

X
indom(600) |
Y

= player

It wouldn't be fair to hit the player from behind, so the asteroids are generated only in front of the player (player.pan + 30 - random(60) degrees). Function move_asteroid will rotate the asteroid towards the player, but we change the direction a little by adding small random values to the pan and tilt angles.

function destroy_asteroid()
{
 my.ambient = 100;
 my.passable = on;
 waitt (2);
 ent_remove (me);
 snd_play (explode_snd, 70, 0);
}

If the asteroid is hit by a rocket or the player, its ambient increases for 0.125 seconds and then the asteroid is removed. If the player is hit by an asteroid, it loses a life; the function that displays the number of lives sets the visible flag to on (or off) depending on skill22 (number of hits).

function display_lives()
{
 while (1)
 {
 if (player.skill22 == 0)
 {
 first_pan.visible = on;
 second_pan.visible = on;
 third_pan.visible = on;
 fourth_pan.visible = on;
 fifth_pan.visible = on;
 }
 if (player.skill22 == 1)
 {
 first_pan.visible = on;
 second_pan.visible = on;
 third_pan.visible = on;
 fourth_pan.visible = on;
 fifth_pan.visible = off;
 }
 if (player.skill22 == 2)
 {
 first_pan.visible = on;
 second_pan.visible = on;
 third_pan.visible = on;
 fourth_pan.visible = off;
 fifth_pan.visible = off;
 }
 if (player.skill22 == 3)
 {
 first_pan.visible = on;
 second_pan.visible = on;
 third_pan.visible = off;
 fourth_pan.visible = off;
 fifth_pan.visible = off;
 }
 if (player.skill22 == 4)
 {
 first_pan.visible = on;
 second_pan.visible = off;
 third_pan.visible = off;
 fourth_pan.visible = off;
 fifth_pan.visible = off;
 }
 if (player.skill22 == 5)
 {
 first_pan.visible = off;
 second_pan.visible = off;
 third_pan.visible = off;
 fourth_pan.visible = off;
 fifth_pan.visible = off;
 }
 wait (1);
 }
}

The functions that are being used to display the particles for the engines are:

function ship_particles()
{
 temp.x = random(2) - 1;
 temp.y = random(10) + 2;
 temp.z = random(2) - 1;
 vec_add (my.vel_x, temp);
 my.alpha = 30 + random(50);
 my.bmap = particle_map;
 my.size = 7 + random(4);
 my.flare = on;
 my.bright = on;
 my.lifespan = 20;
 my.function = fade_particle;
}

function fade_particle()
{
 my.alpha -= 20 * time;
 if (my.alpha < 0) {my.lifespan = 0;}
}

There isn't anything special with these functions; temp.y sets the correct trail direction and my.alpha -= 20 * time sets its length.

After 5 hits, the player loses its lives and has to restart the game by pressing R, which simply calls function main again.

New car

I don't remember how many of you have requested this piece of code at the forum but it worked - I have decided to create the wdl for it. What I'm trying to do here is: move the player in 1st person mode -> touch a car model -> get in the car and drive it in 1st person -> press space to get out of the car and continue to walk. If I approach the car again, I'll start driving it again and so on.

This might look like a difficult task, but it isn't; all I have to do is to switch the functions player_to_car and car_to_player. We place a car model in the level and we attach it the following action:

action my_car
{
 my.enable_impact = on;
 my.event = player_to_car;
}

You can see that the car will react if I touch it; let's see what happens:

function player_to_car()
{
 wait (1);
 ent_remove (me);
 player.shadow = off;
 player._MOVEMODE = _MODE_DRIVING;
 player._FORCE = 1.5;
 player._BANKING = 0.1;
 player.__SLOPES = on;
 player.__WHEELS = on; // rotate only when moving
 player.__JUMP = off; // the car can't jump
 player.__STRAFE = off; // can't strafe
 player.__TRIGGER = on;
 astrength.pan = 1.5; // decrease rotation speed (pan)
 car_entity.visible = on;
 while (key_space == 0) {wait (1);} // press space to switch from car to player
 temp.x = player.x - 100 * sin(player.pan); // check to see if there is an empty space (near the car door) to deploy the player
 temp.y = player.y + 100 * cos(player.pan) ;
 temp.z = player.z;
 ent_create (car_mdl, player.pos, create_car);
 vec_set (player.pos, temp);
 car_entity.visible = off;
 car_to_player();
}

entity car_entity
{
 type = <rallycar.mdl>;
 layer = 10;
 view = camera;
 x = 20;
 y = 0;
 z = -60;
}

The car is removed when the player impacts with it but the player is transformed into a car (you'll see most of these parameters in action player_drive). I have defined a car_entity that looks exactly like the car that has disappeared and I make it visible; now the player can drive as long as he wants to. If we press space, the player is moved near the door and the car model is created again:

function create_car()
{
 wait (1);
 vec_set(temp, my.x);
 my.pan = player.pan;
 temp.z -= 2000; // trace 2000 quants below the car
 trace_mode = ignore_me + ignore_passable + ignore_models + ignore_sprites;
 my.z -= trace (my.x, temp); // place the car at ground level
 my_car(); // start the action again
}
I'm using "trace" to make sure that the car is placed at the ground level; action my_car is called again so the things start over.
A minor detail: we teach the player to behave like a human, not like a car; this is done in:
function car_to_player()
{
 player._MOVEMODE = _MODE_WALKING;
 player._FORCE = 0.75;
 player._BANKING = -0.1;
 player.__SLOPES = off;
 player.__WHEELS = off;
 player.__JUMP = on;
 player.__DUCK = on;
 player.__STRAFE = on;
 player.__BOB = on;
 player.__TRIGGER = on;
 astrength.pan = 7; // restore the original value in move.wdl
}

This snippet does the job but of course that it can be improved. How about checking the content of the space near the door to make sure that the player can get out and won't get stuck in a wall?
 Stratego 2

If you've liked Stratego in Aum2, you'll love Stratego2 because if features:
- True 3D levels
- Selectable units (click)
- Multiple unit selection (drag a frame around the units)
- Different sounds for every unit

I will assume that you are familiar with Stratego so I won't explain how to create buildings, units and so on. All this stuff is explained in Aum2 - we'll concentrate on the new stuff.

Stratego 2 is a standalone project so it has got its own main function:

function main()
{
 level_load (stratego2_wmb);
 wait (2); // wait for the level to be loaded
 clip_size = 0; // show all the triangles for all the models
 fps_max = 40; // lock the frame rate
 camera.x = 0;
 camera.y = 0;
 camera.z = camera_height;
 camera.tilt = -90;
 camera.pan += 90;
 mouse_mode = 2;
 mouse_map = pointer_map;
 mouse_pos.x = screen_size.x / 2;
 mouse_pos.y = screen_size.y / 2;
 move_camera();
 multiple_selection();
 while (index < 9)
 {
 temp.x = start_pos[index];
 temp.y = start_pos[index + 1];
 temp.z = start_pos[index + 2];
 ent_create (guard_mdl, temp, init_unit);
 index += 3;
 }
}

The camera looks down because its tilt = -90; its pan is rotated with 90 degrees because it needs to point in the right direction. The mouse pointer is made visible, being placed in the center of the screen for now and then a few functions are initialized (we'll talk about them a little later). Three units (guard.mdl) are created; their starting positions are read from:

var start_pos[9] = 200, 200, 500, -200, 200, 500, 0, -200, 500;

The first guard is spawned at xyz = 200, 200, 500, the second at -200, 200, 500 and so on. Every guard runs function init_unit():

function init_unit()
{
 wait (1);
 my.enable_click = on;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = move_unit;
 vec_set (temp, my.pos);
 temp.z -= 3000;
 trace_mode = ignore_me + ignore_sprites + ignore_models + use_box;
 my.z -= trace (my.pos, temp); // place the unit on the ground (it has been spawned in the air)
 my.target_x = 100000;
 while (1)
 {
 while (my.target_x < 50000) {wait (1);}
 if ((my.x > upleft_coords.x) && (my.x < upright_coords.x) && (my.y < upleft_coords.y) && (my.y > downleft_coords.y) && (my.unit_selected == 0))
 {
 my.unit_selected = 1;
 move_unit();
 }
 else
 {
 if (my.unit_selected == 1)
 {
 vec_set (upleft_coords, nullvector); // reset selection coords
 vec_set (upright_coords, nullvector);
 vec_set (downleft_coords, nullvector);
 vec_set (downright_coords, nullvector);
 }
 }
 wait (1);
 }
}

The unit will react on mouse clicks, collisions with level geometry and collision with other entities. The guards are generated up in the air (their z coord was set to 500 in the array, remember?) so we need to move them on the ground. We are tracing 3000 quants below the the unit and we're substracting the result from its initial z; my.target_x = 100000 simply says that the unit hasn't got any target yet (the coordinates are given in quants so 100000 quants is just a way of saying "out of range").

You'll be seeing a lot of my.target_x or my.unit_selected, etc in Stratego 2 but don't worry: these are skills that are defined at the beginning of stratego2.wdl: for example, my.target_x is the same thing with my.skill12 but it looks better this way, isn't it?

Every unit has a while(1) loop that keeps running even if the unit if performing other task; if unit's target_x is bigger than 50000 (we agreed that target_x = 100000 means no target, right?) and the unit was selected (together with other entities or not) by dragging a frame around it, the unit will be selected (my.unit_selected = 1) and it will start moving towards its (yet to be set) target. As soon as the unit is selected, the selection coords are reset. Let's talk a little about these coords:

function multiple_selection()
{
 while (1)
 {
 if (mouse_left == 1)
 {
 upper_left.visible = on;
 upper_right.visible = on;
 lower_left.visible = on;
 lower_right.visible = on;
 if (first_click == 0) // make sure that this "if" branch is executed only once
 {
 first_click = 1;
 upper_left.pos_x = pointer.x; // store panel's position
 upper_left.pos_y = pointer.y;
 }
 lower_right.pos_x = pointer.x; // store panel's position
 lower_right.pos_y = pointer.y;

 lower_left.pos_x = upper_left.pos_x; // store panel's position
 lower_left.pos_y = lower_right.pos_y;

 upper_right.pos_x = lower_right.pos_x; // store panel's position
 upper_right.pos_y = upper_left.pos_y;

 }
 else // finished multiple selection
 {
 upper_left.visible = off;
 upper_right.visible = off;
 lower_left.visible = off;
 lower_right.visible = off;
 first_click = 0;

 upleft_coords.x = upper_left.pos_x; // project upper_left's panel coords on the map
 upleft_coords.y = upper_left.pos_y;
 upleft_coords.z = camera_height;
 vec_for_screen (upleft_coords, camera);

 upright_coords.x = upper_right.pos_x; // project upper_left's panel coords on the map
 upright_coords.y = upper_right.pos_y;
 upright_coords.z = camera_height;
 vec_for_screen (upright_coords, camera);

 downleft_coords.x = lower_left.pos_x; // project upper_left's panel coords on the map
 downleft_coords.y = lower_left.pos_y;
 downleft_coords.z = camera_height;
 vec_for_screen (downleft_coords, camera);

 downright_coords.x = lower_right.pos_x; // project upper_left's panel coords on the map
 downright_coords.y = lower_right.pos_y;
 downright_coords.z = camera_height;
 vec_for_screen (downright_coords, camera);
 }
 wait (1);
 }
}

Function multiple_selection() sets the coords that are needed by every unit to see if it has been selected (or not) by dragging a frame around it. Let's take a look at this picture:

[image: image15.jpg](upper_left pos_x, upper_left pos_y) (upper_tight pos_x, upper_ight. pos_y)

(= =

= unit(guard.mdi)

[=

(lower_lef.pos_x, lower_right. pos_y) (lower_right.pos_x, lower_right.pos_y)

When we click on the map (mouse_left = 1) four simple panels (upper_left, upper_right, lower_left, lower_right) are displayed on the screen. These panels are the little green ones in the picture above. The first panel (upper_left) appears at pointer's position and remains there; the rest of the panels will change their positions on screen depending on pointer's movement in order to "draw" frames of different widths / heights. Of course that we could use a single, square-sized "entity" panel and change its scale on x and y.

When the mouse is released (the frame has been "drawn" around the units) we're moving to the "else" branch: the panels are made invisible and the coordinates for the four corners are translated to level geometry coords using vec_for_screen, like in this picture:

[image: image16.jpg]upleft_trards
downief_enords

Upiight_caords
downight_Coords

vec_to_screen

At this point we have created a virtual frame that has the same size with the one that was drawn over the screen; the code in init_unit checks if the corresponding unit is placed inside this virtual frame:

if ((my.x > upleft_coords.x) && (my.x < upright_coords.x) && (my.y < upleft_coords.y) && (my.y > downleft_coords.y) && (my.unit_selected == 0))
{
..............
}

[image: image17.jpg]upleft_coords upright_coords

|
|
| (myx, myy) (my, myy)
|

downleft_coords downright_coords

In my example all the units are placed inside the virtual frame so all of them will be selected.

Here's the scary function move_unit():

function move_unit()
{
 if (event_type == event_block || event_type == event_entity) // collision with other entities or level geometry
 {
 if (abs(my.x - my.target_x) + abs(my.y - my.target_y) < 100) // close to the target but other entities are already there
 {
 my.target_reached = 1; // the unit has reached the target
 my.unit_selected = 0;
 my.target_x += 100000; // move the target far away to get out of this "if" branch
 }
 else
 {
 // caveman's path finding code - read more about it in Aum2
 my.pan += 90 - random(180);
 waitt (10); // wait a little
 temp.x = my.target_x; // stored mouse pointer coordinates
 temp.y = my.target_y;
 temp.z = 0;
 vec_sub (temp, my.x);
 vec_to_angle (my.pan, temp); // rotate unit towards the target again
 my.tilt = 0; // stand tall :)
 }
 }
 if (event_type == event_click || my.unit_selected == 1)
 {
 my.destination = 0;
 my.target_reached = 0; // target not available yet
 ent_create (selected_pcx, my.pos, selected_unit);
 my.selected_handle = snd_play (selected_snd, 70, 0);
 snd_tune (my.selected_handle, 70, 80 + random(20), 0); // different "huh?" voices
 while (mouse_left == 1) {wait(1);} // wait for the mouse release
 while (my.destination == 0) // as long as the target hasn't been set
 {
 if (mouse_left == 1)
 {
 mouse_map = pointerhigh_map;
 my.ok_handle = snd_play (ok_snd, 70, 0); // store the sound handle in a skill, no need to use a separate var
 snd_tune (my.ok_handle, 70, 80 + random(50), 0); // different "ok" voices
 waitt (4); // show the cross for 0.25 seconds
 mouse_map = pointer_map;
 my.destination = 1;
 temp.x = mouse_pos.x;
 temp.y = mouse_pos.y;
 temp.z = camera_height;
 vec_for_screen (temp, camera); // temp holds pointer's coords now
 my.target_x = temp.x; // store pointer's coords before they get lost
 my.target_y = temp.y;
 vec_sub (temp, my.x);
 vec_to_angle (my.pan, temp); // rotate the unit towards the target
 my.tilt = 0; // we only need the correct "pan" angle, not tilt
 my.fuel = 300; // maximum path length (fuel)
 while (abs(my.x - my.target_x) + abs(my.y - my.target_y) > 3 && my.fuel > 0 && my.target_reached != 1) // stop near the target
 {
 my.unit_selected = 0;
 vec_set (temp, my.x);
 temp.z -= 3000;
 trace_mode = ignore_me + ignore_sprites + ignore_models + use_box;
 unit_speed.z = -trace (my.x, temp);

 move_mode = ignore_you + ignore_passable;
 ent_move (unit_speed, nullvector);
 ent_cycle("walk", my.animation_frame); // play walk frames animation
 my.animation_frame += 5 * time; // "walk" animation speed
 if (my.animation_frame > 100) {my.animation_frame = 0;} // loop animation
 my.fuel -= time; // burn fuel
 wait (1);
 }
 my.target_reached = 1; // the unit has reached the target
 my.target_x += 100000;
 ent_cycle("stand", 0); // the unit stands still now
 }
 wait (1);
 }
 }
}

This function will run if the unit is clicked on (its event_click is triggered) or if my.unit_selected = 1 (the unit has been selected by dragging a frame around it). If one of these things happen, we create a green sprite that surrounds the unit, play a "huh?" sound with a random frequency (that's why we use snd_tune and random) and then we wait until the left mouse button is released. Now we have to set the destination: if we click somewhere on the map, the pointer changes to pointerhigh_map (a cross), the "ok" sound - again with a different frequency for every unit - is played and the mouse pointer is set back to normal. Another vec_for_screen instruction will convert the mouse coordinates to a position in the level - that's the target for our units! The guards will rotate towards this target and move towards it as long as the distance between them and the target is smaller than 3.

On the other hand, the target might be unreachable for a certain unit; if this is the case, the unit should stop after a certain period of time. This is why I am using my.fuel: the unit starts with fuel = 300 and burns it as it moves in the level. When fuel < 0 the unit will stop even if it hasn't reached the target.

I'm using a trace again because I have to keep the units on the ground all the time; the units are tracing only when they're moving. When the unit has reached the target (or ran out of fuel) its target_x is set to a value around 100000 (which means that it has no target) and its target_reached flag is set.

 if (event_type == event_block || event_type == event_entity) // collision with other entities or level geometry
 {
 if (abs(my.x - my.target_x) + abs(my.y - my.target_y) < 100) // close to the target but other entities are already there
 {
 my.target_reached = 1; // the unit has reached the target
 my.unit_selected = 0;
 my.target_x += 100000; // move the target far away to get out of this "if" branch
 }
 else
 {
 // caveman's path finding code - read more about it in Aum2
 my.pan += 90 - random(180);
 waitt (10); // wait a little
 temp.x = my.target_x; // stored mouse pointer coordinates
 temp.y = my.target_y;
 temp.z = 0;
 vec_sub (temp, my.x);
 vec_to_angle (my.pan, temp); // rotate unit towards the target again
 my.tilt = 0; // stand tall :)
 }
 }

I'm not sure if you've missed the lines above in move_unit - I haven't. These lines are useful when the unit collides with another entity or with a level block. If the target is really close when the collision occurs, it's quite sure that another unit has reached the target already. All the units have the same target (if more than one entity is selected) so the unit that has reached the target on the 2nd, 3rd, etc place will stop close to the target, as soon as it "touches" another entity in that area. If the unit has collided with a block or another unit but it is far from the target, its pan is changed, the unit walks for a few frames in another direction and then it tries to reach the target again.

function selected_unit()
{
 my.unlit = on; // shouldn't be affected by the lights in the level
 my.ambient = 100; // make it bright
 my.oriented = on;
 my.passable = on;
 my.tilt = 90;
 while (you.target_reached == 0) // as long as the target hasn't been reached
 {
 vec_set (my.pos, you.pos); // move with the unit
 wait (1);
 }
 ent_remove (me); // the target has been reached so the square has to disappear
}

Function selected_unit moves the green sprote that surrounds the player until the unit reached its target, and then it removes the green sprite.

The last function is taken from Aum2:

function move_camera()
{
 waitt (4); // wait for the level to load
 level_marginx = 1000; // the map has 2000 quants on x (-1000...+1000)
 level_marginy = 1000; // and on y (-1000...+1000)
 while (1)
 {
 mouse_pos.x = pointer.x;
 mouse_pos.y = pointer.y;
 if (mouse_pos.x < 1 && camera.x > level_marginx * (-1)) {camera.x -= 10 * time;}
 if (mouse_pos.x > screen_size.x - 2 && camera.x < level_marginx) {camera.x += 10 * time;}
 if (mouse_pos.y > screen_size.y - 2 && camera.y > level_marginy * (-1)) {camera.y -= 10 * time;}
 if (mouse_pos.y < 1 && camera.y < level_marginy) {camera.y += 10 * time;}
 wait (1);
 }
}

You can set the level boundaries (as far as the camera is concerned) with level_marginx and level_marginy and adjust its scrolling speed by replacing 10 with smaller or bigger values.

I can see that Stratego1 & 2 could be used to create a good strategy game; the only things that weren't covered in Aum so far are AI (pathfinding) and close combat. Start your strategy game today - I'll make sure that you get these additions in a few months :)

Turrets

These mean turrets can kill you in a second or two because they were trained to do this since they were 5 years old. Take a look at the action that is attached to them:

action turret
{
 if (my.skill1 == 0) {my.skill1 = 1000;} // set the range with skill1, default = 1000 quants
 if (my.skill2 == 0) {my.skill2 = 180;} // default viewing angle in front of the turret = 180
 my.enable_impact = on;
 my.event = destroy_turret;
 while (player == null) {wait (1);}
 while (my != null && player != null)
 {
 my.skill10 = abs(ang(player.pan) - ang(my.pan));
 if (vec_dist (my.x, player.x) < my.skill1)
 {
 if ((my.skill10 > 180 - my.skill2 / 2) && (my.skill10 < 180 + my.skill2 / 2))
 {
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp);
 ent_create (bullet_mdl, my.pos, move_bullet);
 }
 }
 waitt (8); // fires 2 bullets a second
 }
}

The turrets have adjustable range and viewing angle; if you forget to set skill1 and skill2 in Wed they'll use the default values. If the unit is hit by a bullet, it will be destroyed; we'll talk about that a little later. As long as the turret and the player are "alive", the turret computes the distance to the player, rotates towards it and fires 2 bullets a second.

my.skill10 = abs(ang(player.pan) - ang(my.pan));
................................
if ((my.skill10 > 180 - my.skill2 / 2) && (my.skill10 < 180 + my.skill2 / 2))

These two lines make sure that the turret and the player see each other; I could have used a scan_entity instruction as well. The turret can "see" the player if the angle between the player and the turret ranges from 180 - skill2 / 2 180 + skill2 / 2. If we are using the default values for skill2, the turret will see the player is the angle between them is between 90 and 270 degrees.

function destroy_turret()
{
 wait (1);
 if (you == player) {return;} // can't be destroyed by running into it
 snd_play (explode_snd, 70, 0);
 ent_remove (me);
}

If the turret impacts with something, it will be destroyer. We don't want to allow the player to destroy the turret by simply running into it so if (you == player) nothing happens. The function that moves turret's bullet is typical and I have explained how it works several times in previous Aum editions:

function move_bullet()
{
 wait (1);
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_bullet;
 my.passable = on;
 my.pan = you.pan;
 bullet_speed.x = 100;
 bullet_speed.y = 0;
 bullet_speed.z = 0;
 bullet_speed *= time;
 while (my != null)
 {
 if (you == null) {return;}
 if (vec_dist (my.x, you.x) < 100) // don't collide with the turret
 {
 my.passable = on;
 }
 else
 {
 my.passable = off;
 }
 ent_move (bullet_speed, nullvector);
 wait (1);
 }
}

Here's the final function:

function remove_bullet()
{
 wait (1);
 if (you == player) {player._health -= 10;}
 ent_remove (me);
}

If the bullet hits the player, it substracts 10 healthpoints from player's health and it disappears; if the bullet has hit a wall it will disappear without causing any damage.

 Sword combat

This time I have created a small level where the player and a skeleton fight using swords. Although the code can (and should) be improved it offers precious information on how to create close range combat weapons (sword, knife, fist, etc). You know that I don't like to use complicate main functions:

function main()
{
 level_load (sword_combat_wmb);
 wait (2);
 clip_size = 0;
 on_d = null;
 fps_max = 40;
}

We're going to move the player using WSAD so I had to disable the debug panel that appears when you press the "D" key. The action attached to the player is:

action player_fight
{
 player = me;
 player.healthpoints = 100;
 while (player.healthpoints > 0)
 {
 camera.x = player.x - 200 * cos(player.pan);
 camera.y = player.y - 200 * sin(player.pan);
 camera.z = player.z + 200;
 camera.pan = player.pan;
 camera.tilt = -30;

These lines say: I'm the player and I have 100 health points (healthpoints is just another name for skill18 in my example). As long as my healthpoints are bigger than 0, the while loop will continue to run. The following lines are placing the camera 200 quants behind the player all the time.

 my.pan += 4 * (key_a - key_d) * time - 20 * mouse_force.x * time;
 player_distance.x = 10 * (key_w - key_s) * time;
 player_distance.y = 0;
 player_distance.z = 0;

The player can rotate by pressing A and D or by moving the mouse. You can move forward / backward using the keys W and S. Player_distance is a var that will be used in the ent_move instruction that moves the player.

 if ((key_w == 1) || (key_s == 1))
 {
 ent_cycle("walk", my.skill20);
 my.skill20 += 4 * time;
 if (my.skill20 > 100) {my.skill20 = 0;}
 }
 else
 {
 ent_cycle("stand", my.skill21);
 my.skill21 += 2 * time;
 if (my.skill21 > 100) {my.skill21 = 0;}
 }
 ent_move(player_distance, nullvector);

If the player is walking (W or S are pressed) we play its "walk" animation frames. If W or S aren't pressed the player is standing so we play its "stand" animation frames. Finally, player_distance is used to move the player.

 if (mouse_left == 1)
 {
 while (my.skill22 < 100)
 {
 ent_vertex(my.sword_tip, 315); // get the value in Med
 ent_vertex(my.sword_base, 293); // get the value in Med
 trace_mode = ignore_me + ignore_passable;
 trace (my.sword_base, my.sword_tip);
 if (result != 0)
 {
 effect (particle_sparks, 10, target, normal);
 if (you != null) {you.healthpoints -= 6 * time;}
 ent_playsound (my, sword_snd, 50);
 }
 ent_cycle("attack", my.skill22);
 my.skill22 += 8 * time;
 wait (1);
 }
 while (mouse_left == 1) {wait (1);}
 }
 wait (1);
 }

If we press the left mouse button, we enter the attack loop. This loop will run until the player has reached his last "attack" animation frame, stored in skill22. We store the sword base and sword tip (just another names for skill12 and skill15) and we trace between these two positions. If result != 0 (the player has hit something) we generate some particles at hit point using the predefined "target" vector. If the player has hit an entity (not a wall, etc) health is decreased and a sword sound is played. The player will run through his "attack" animation frames and after we release the left mouse button everything goes back to normal.

 while (my.skill23 < 90)
 {
 ent_cycle("death", my.skill23);
 my.skill23 += 3 * time;
 wait (1);
 }
 my.passable = on;
}

At this point the player is dead, so he plays the "death" animation frames and then he becomes passable, therefore he can't be hit by the enemy sword from now on because trace is set to ignore passable entities.

The action attached to the enemy is similar; I have used a pointer named "enemy" but if you plan to use several enemy units replace "enemy" with "my":

action enemy_fight
{
 enemy = me;
 enemy.healthpoints = 100;
 while (my.healthpoints > 0)
 {
 if (vec_dist (my.x, player.x) < 200 && player.healthpoints > 0)
 {
 vec_set(temp, player.x);
 vec_sub(temp, my.x);
 vec_to_angle(my.pan, temp);
 my.tilt = 0;
 enemy_distance.x = 5 * time;
 enemy_distance.y = 0;
 enemy_distance.z = 0;
 ent_move(enemy_distance, nullvector);
 ent_cycle("walk", my.skill19);
 my.skill19 += 5 * time;
 if (my.skill19 > 100) {my.skill19 = 0;}

The enemy has 100 healthpoints too; if the player is alive and comes closer than 200 quants, the enemy will rotate towards him and will start chasing him, playing its "walk" animation frame in a loop.

 if (vec_dist (my.x, player.x) < 50)
 {
 while (my.skill20 < 100)
 {
 ent_vertex(my.sword_tip, 291); // get the value in Med
 ent_vertex(my.sword_base, 306); // get the value in Med
 trace_mode = ignore_me + ignore_passable;
 trace (my.sword_base, my.sword_tip);
 if (result != 0)
 {
 effect (particle_blood, 2, target, normal);
 if (you != null) {you.healthpoints -= 4 * time;}
 ent_playsound (my, sword_snd, 50);
 }
 ent_cycle("attack", my.skill20);
 my.skill20 += 5 * time;
 wait (1);
 }
 waitt (6); // slows down the enemy and reduces the number of traces per second
 }
 }

If the player is closer than 50 quants, the enemy will attack using the similar code and a different particle function. The enemy will cause less damage - the player will have a hard time anyway :).

 else // the player is farther than 200 quants away
 {
 ent_cycle("stand", my.skill21); // play stand frames animation
 my.skill21 += 2 * time; // "stand" animation speed
 if (my.skill21 > 100) {my.skill21 = 0;} // loop animation
 }
 wait (1);
 }
 while (my.skill22 < 80) // the enemy is dead
 {
 ent_cycle("death", my.skill22); // play death frames animation
 my.skill22 += 1 * time; // "death" animation speed
 wait (1);
 }
 my.passable = on; // the corpse can't be hit by the sword from now on
}

If the player is farther than 200 quants, the enemy will go back to its "stand" animation frames. The enemy dies sharing the same code with the player.

The functions that generate particles (player's blood and skeleton's blood) are similar:

function particle_sparks()
{
 temp.x = random(2) - 1;
 temp.y = random(2) - 1;
 temp.z = random(1) - 1.5;
 vec_add (my.vel_x, temp);
 my.alpha = 30 + random(50);
 my.bmap = spark_map;
 my.size = 10;
 my.flare = on;
 my.bright = on;
 my.move = on;
 my.lifespan = 20;
 my.function = fade_particle;
}

function particle_blood()
{
 temp.x = random(2) - 1;
 temp.y = random(2) - 1;
 temp.z = random(1) - 1.5;
 vec_add (my.vel_x, temp);
 my.alpha = 70 + random(30);
 my.bmap = blood_map;
 my.size = 6;
 my.flare = on;
 my.bright = on;
 my.move = on;
 my.lifespan = 20;
 my.function = fade_particle;
}

function fade_particle()
{
 my.alpha -= 5 * time;
 if (my.alpha < 0) {my.lifespan = 0;}
}

The particles are generated in an area located near the impact point and they're falling down (temp.z < 0). Let's take a look at the panel and text:

string health_str = "Player Health: Enemy Health:";

panel health_panel
{
 pos_x = 0;
 pos_y = 0;
 digits = 120, 575, 4, swc_font, 1, player.healthpoints;
 digits = 550, 575, 4, swc_font, 1, enemy.healthpoints;
 flags = refresh, visible;
}

text health_text // displays the text
{
 pos_x = 0;
 pos_y = 550;
 font = swc_font;
 string = health_str;
 flags = visible;
}

You can see that I'm using a single panel with 2 digits to display the values and a single text with a longer string to display player's and enemy's strings. You're right, that's why I have created a pointer for the enemy: I wanted to display its health too.

So what happens if the skeleton hits player's sword? The sword and the player are created as a single model in my example so player's health will be decreased anyway. You can avoid that by having a player with a separate sword model attached to him or by detecting the impact point and comparing its coordinates with sword's coordinates read by ent_vertex.

Forest

This snippet will generate a forest in a square sized area in your level. This should save you a lot of work and more than that, you will have a different forest every time you run the level.

define num_trees = 100;

var max_x = 1000;
var min_x = -1000;
var max_y = 1000;
var min_y = -1000;

The forest will have 100 trees; in my example the trees will be placed inside a rectangular area (-1000 quants ... 1000 quants on x and -1000 ... 1000 quants on y but you can use any other values).

The forest is generated by running this function in main:

function generate_forest()
{
 randomize(); // always generate a different forest
 while (tree_index < num_trees)
 {
 tree_pos.x = sign(min_x) * random(abs(min_x)) + sign(max_x) * random(abs(max_x));
 tree_pos.y = sign(min_y) * random(abs(min_y)) + sign(max_y) * random(abs(max_y));
 tree_pos.z = 1000; // 3000 quants above the floor level
 tree_index += 1;
 if (random(1) > 0.5)
 {
 ent_create (tree1_mdl, tree_pos, create_tree);
 }
 else
 {
 ent_create (tree2_mdl, tree_pos, create_tree);
 }
 ifdef fun;
 waitt (8);
 endif;
 }
}

First of all we call the predefined function randomize(); this makes sure that we get a different forest every time we run the level. Random numbers aren't that "random"; they're usually computed using complicated functions but every time you start getting a random number, that huge "random" function delivers the same result. Randomize makes sure that random won't deliver the first function value, but a "random" function value - got it?

As long as we haven't generated all the trees (tree_index < num_trees), we generate a random tree position inside the rectangular area, 1000 quants above the ground (if the ground is set to 0 on the z axis). We add 1 to tree_index, meaning that we have generated a new tree and depending on a random value we create one of the two trees that are used for this forest.

If we run the level like this: "office.wdl -d fun" we place two trees a second, so we will be able to see how they're created and placed in the level. If we run the level without -d fun all the trees will be placed in the level way too fast - but that's what we want, isn't it?

The function that runs for every tree is:

function create_tree()
{
 wait (1);
 my.pan = random(360);
 vec_set (temp, my.pos);
 temp.z -= 3000;
 trace_mode = ignore_me + ignore_sprites + ignore_models + use_box;
 my.z -= trace (my.pos, temp) + 20;
}

You can see that the tree will have a random pan angle. We do a trace 3000 quants below the initial position and we decrease the z coordinate until the tree is placed on the ground. We add 20 quants more to make sure that the "roots" will stick in the ground even if the tree is on a slope.

Please make sure that you use low poly models or (even better) sprites for your trees. If your tree has 500 polygons and you want to have 500 trees in the forest, you won't find a 3d card that is able to render 250,000 polygons at decent frame rates.

 Scrolling panel

Sometimes you want to be able to scroll some text printed on a panel but you can't simply change its pos_x and pos_y parameters because you don't want a huge panel to move up and down across the screen. You need something smaller, something like a window in the panel. Ok, so let's use one:

First of all we define a panel:

panel spanel_pan
{
 bmap = spanel_pcx;
 pos_x = 0;
 pos_y = 0;
 layer = 30;
 button 217, 25, arrow1_pcx, arrow1_pcx, arrow1_pcx, scroll_up, null, null;
 button 217, 45, arrow2_pcx, arrow2_pcx, arrow2_pcx, scroll_down, null, null;
 window = 10, 20, 200, 50, text_pcx, text_pos.x, text_pos.y;
 flags = overlay, d3d, refresh;
}

This is a common panel definition; we have two arrow - shaped buttons that will be used to scroll the text up and down and a window definition. Let's take a closer look at it:

window = 10, 20, 200, 50, text_pcx, text_pos.x, text_pos.y;

This instruction creates a window (a hole) in the panel. The window will be placed at (10, 20) and will have 200 pixels on x and 50 pixels on y. The text that will appear in this window is printed on text_pcx; its coordinates are given by text_pos.x and text_pos.y

function scrolling_text()
{
 mouse_toggle(); // show the cursor
 text_pos.x = 10;
 text_pos.y = 20;
 while (1)
 {
 if (key_h == 1) // press H to show the panel
 {
 while (key_h == 1) {wait (1);}
 spanel_pan.visible = (spanel_pan.visible == off);
 }
 wait (1);
 }
}

Function scrolling_text is called in main; it shows the cursor using a template function (mouse_toggle) and then sets the starting position for the text that will appear in the window. The while loop shows the panel or hides it when we press the "H" key, using a single line of code. Try to understand how this line works:

spanel_pan.visible = (spanel_pan.visible == off);

and you'll be a step closer to the yellow belt :)

The last functions are:

function scroll_up()
{
 while (mouse_left == 1)
 {
 if (text_pos.y < 350) // text height - window height
 {
 text_pos.y += 3 * time;
 }
 wait (1);
 }
}

function scroll_down()
{
 while (mouse_left == 1)
 {
 if (text_pos.y > 0)
 {
 text_pos.y -= 3 * time;
 }
 wait (1);
 }
}

These functions run when we press one of the arrows that make the text scroll. If we press one of the arrows, the text scrolls in the corresponding directions as long as the left mouse button is pressed. If the text has reached its upper / lower limit, it can't be scrolled anymore. Have fun but don't forget that any panel uses video memory; try to use a decent width / height for every panel.

3rd shooter

No, it isn't the 3rd shooter in this magazine, it's the 3rd person shooter code. The good news is that you can use the code for any arcade game. This project has its own main function:

function main()
{
 level_load (shoot3rd_wmb);
 wait (2);
 clip_size = 0;
 fps_max = 50;
 on_d = null;
}

There's nothing special in main; I have locked the frame rate to 50 fps and the "D" key won't bring the debug panel on because we need the key for player's movement (WSAD).

The action attached to the player is the biggest one so let's throw it in before you get tired:

action player_init
{
 player = me;
 player.skill20 = 100;
 my.enable_impact = on;
 my.event = player_damage;
 camera.z = my.z + 700;
 camera.tilt = -90;
 ent_create(soldiergun_mdl, nullvector, attach_soldiergun); // give him a gun

We use player's skill20 to store the health. The player is sensitive to impact; if it is hit by something its player_damage event is triggered. The camera is placed 700 quants above the player and looks down at it. The player gets a gun, but we'll talk about function attach_soldiergun a little later.

 while (my.skill20 > 0)
 {
 my.pan += 4 * (key_a - key_d) * time - 20 * mouse_force.x * time;
 player_speed.x = 10 * (key_w - key_s) * (1 - mouse_left) * time;
 player_speed.y = 0;

As long as the player is alive (skill20 > 0), it can rotate by changing its pan with "A" and "D". The player moves forward / backward with "W" and "S", but only if the left mouse button (LMB) isn't pressed. I had to do this because when the player fires, its gun must point towards the enemy and when this player model walks its weapon points to the left.

 if (mouse_left == 1)
 {
 ent_cycle ("attack", 100);
 ent_create (bullet_mdl, my.skill12, init_shot);
 snd_play (shoot1_snd, 70, 0);
 while (mouse_left == 1) {wait (1);}
 }
 else
 {
 if (player_speed.x != 0)
 {
 ent_cycle ("walk", my.skill10);
 my.skill10 += 10 * time;
 if (my.skill10 > 100) {my.skill10 = 0;}
 }
 }

If we press the LMB, the player will change its frame to the last "attack" frame and a bullet will be fired. We don't want to have autofire, so we wait until the LMB is released. If LMB isn't pressed, the player will play its "walk" animation frames in a loop.

 vec_set (temp, my.x);
 temp.z -= 3000;
 trace_mode = ignore_me + ignore_sprites + ignore_models + use_box;
 player_speed.z = -trace (my.x, temp);
 ent_move(player_speed, nullvector);

 camera.pan = my.pan;
 camera.x = my.x + 250 * cos (my.pan);
 camera.y = my.y + 250 * sin (my.pan);

 wait (1);
 }
}

The player moves using gravity - you've seen similar code in stratego2. Finally, the camera is centered in a point that is placed 250 quants in front of the player.

[image: image18.jpg]

function attach_soldiergun()
{
 proc_late();
 my.passable = on;
 my.metal = on;
 while(you != null)
 {
 vec_set(my.x,you.x);
 vec_set(my.pan,you.pan);
 my.frame = you.frame;
 my.next_frame = you.next_frame;
 vec_for_vertex(you.skill12, my, 6); // soldier's bullet position is stored in soldier's skill12
 wait(1);
 }
 ent_remove(my);
}

The function above gives player a gun that will exist as long as the player isn't removed from the level. The gun was animated together with the player and then it was saved as a separate model so we only need to set its x, pan and frame to be the equal with player's x, pan and frame. We store the bullet vertex coords in player's skill12 (you.skill12 = player.skill12 because the player has created the gun).

If the player or the enemy shoot, function init_shot runs:

function init_shot()
{
 my.pan = you.pan;
 my.tilt = you.tilt;
 my.skill10 = 1;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_bullet;
 my.ambient = 100;
 my.skill1 = 0;
 bullet1_speed.x = 10;
 bullet1_speed.y = 0;
 bullet1_speed.z = 0;
 bullet1_speed *= time;
 while ((my != null) && (my.skill1 < 500)) // 500 = max distance
 {
 my.skill1 += 1 * time;
 move_mode = ignore_you + ignore_passents;
 ent_move (bullet1_speed, nullvector);
 wait (1);
 }
 ent_remove (me);
}

function remove_bullet()
{
 wait (1);
 ent_remove (me);
}

The bullet has the same pan and tilt with its creator; it can collide with entites and level blocks. The bullet will exist (as long as it hasn't collided with anything) for a limited period of time - until its skill1 reaches 500. The bullet ignores its creator or any passable entity so it can't collide with the gun that has fired it, with water, etc. If the bullet hits something it is removed after 1 frame.

If the player is hit by an enemy bullet, its player_damage function will be triggered:

function player_damage()
{
 if (you.skill10 != 1)
 {
 return;
 }
 else
 {
 my.skill20 -= 10;
 if (my.skill20 <= 0)
 {
 my.enable_impact = off;
 my.event = null;
 my.skill10 = 0;
 my.skill30 = 1; // I'm dead
 while (my.skill10 < 67)
 {
 ent_cycle("death", my.skill10);
 my.skill10 += 6 * time;

 if (camera.z > player.z + 300)
 {
 camera.z -= 10 * time;
 }
 wait (1);
 }
 }
 }
}

The player could be hit by a wall, by an enemy or by an enemy bullet. This is why we have to check skill10 at the beginning of the function to make sure that the player is hit by a bullet (we've set it to 1 in function init_shot, remember?) Every bullet will take 10 health points and if player's health goes below 0, the player will play its "death" animation. The camera will zoom in a little by decreasing its height in order to show a bigger player corpse.

Time to move on to the enemy! First of all, the action that creates the enemies:

action generate_enemy
{
 my.scale_x *= 0.7;
 my.scale_y = my.scale_x;
 my.passable = on;
 my.oriented = on;
 my.bright = on;
 my.flare = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) < 500) {wait (1);}
 waitt (48 + random (64));
 vec_set (temp, my.pos);
 temp.z += 50;
 ent_create (enemy_mdl, my.pos, move_enemy);
}

These 3rd person games allow us to create the enemies on the fly; I have used a few oriented sprites as enemy generators. If the player comes closer to them, they will start creating enemies. This way you can spread enemy generators throught player's path.

The generators will until the player is created; if it comes closer than 500 quants, the enemy is created after 3..7 seconds, 50 quants above the sprite. The enemy moves using the function below:

function move_enemy
{
 my.enable_impact = on;
 my.event = enemy_damage;
 ent_create(enemygun_mdl, nullvector, attach_enemygun); // give him a gun

The enemy is sensitive to impact too; it gets a gun using a similar function.

 while (vec_dist(my.x, player.x) > (300 + random(100)))
 {
 enemy_speed.x = 10 * time;
 enemy_speed.y = 0;
 enemy_speed.z = 0;

 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp);

 move_mode = ignore_you + ignore_passents;
 ent_move (enemy_speed, nullvector);
 ent_cycle ("walk", my.skill10);
 my.skill10 += 10 * time;
 if (my.skill10 > 100) {my.skill10 = 0;}
 my.tilt = 0;
 wait (1);
 }

As long as the player is farther than 300..400 quants, the enemy will move towards it, playing its "walk" animation in a loop.

 ent_cycle("attack", 100);
 waitt (2);
 while (my.skill30 == 0 && player.skill20 > 0)
 {
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.skill12);
 vec_to_angle (my.pan, temp);
 ent_create (bullet_mdl, my.skill12, init_shot);
 my.tilt = 0;
 snd_play (shoot1_snd, 70, 0);
 waitt (32);
 }
}

When the enemy has come close enough, it changes to "attack" and starts firing at the player if the player and the enemy are alive. The enemy rotates towards the player and fires a bullet every 2 seconds.

If the enemy is hit by a bullet, its enemy_function runs. The good news is that the enemies can shoot each other :)

function enemy_damage()
{
 if (you.skill10 != 1) {return;}
 wait (1);
 my.enable_impact = off;
 my.event = null;
 my.skill10 = 0; // start with the first death frame
 my.skill30 = 1; // I'm dead
 while (my.skill10 < 67)
 {
 ent_cycle("death", my.skill10); // play death animation
 my.skill10 += 6 * time;
 wait (1);
 }
 my.passable = on; // can pass through the corpse
}

First of all we check if the enemy has impacted with a bullet. If this is true we play its "death" animation and then we make its corpse passable because the player should be able to pass through it.

This was all for today. I'll see you in a few weeks with a fresh standalone project!

 Teleport

Beaming the player from one place to the other is really easy - all you need to do is change its coordinates and sometimes its angle. The snippet below allows you to set the destination points and angle in Wed so you don't need to change these coordinates in the C-script file every time you set a new destination.

The action attached to the teleport entity is:

action teleport
{
 while (player == null) {wait(1);}

 vec_set (my.skill15, strength);
 vec_set (my.skill18, astrength);

 person_3rd = 0.5;
 camera_dist.x = 200;
 camera_dist.z = -300;
 head_angle.tilt = -45;

We wait until the player is created and then we store its strength and astrength template values (player's speed on x y z and player's angular speeds). I'm using skills15..17 to store strength and skills18..20 for astrength. If you're an older reader of this magazine you already know that we can store any var in 3 consecutive skills.

We force the 3rd person camera mode and we set a decent camera distance on x and z and a good camera angle by changing the values in the templates.

 while (1)
 {
 while (vec_dist (my.x, player.x) > 40) {wait (1);}
 vec_set (strength, nullvector); // the player can't move
 vec_set (astrength, nullvector); // or rotate from now on
 temp.z = my.z;
 my.skill10 = particle_emmiters;
 my.skill11 = min_radius;
 while (my.skill10 > 0)
 {
 temp.x = player.x + min_radius * cos(my.skill12);
 temp.y = player.y + min_radius * sin(my.skill12);
 temp.z += up_step;
 my.skill12 += angle_step;
 min_radius += radius_step;
 effect (create_fx, 1, temp.x, normal);
 my.skill10 -= 1;
 }

When the player comes closer than 40 quants to the origin of the teleport entity, we reset its strength and astrength so it won't be able to move or rotate from now on. We create particles on a circle around the player - the radius and the height of this circle keeps growing and growing, like in the picture below:

[image: image19.jpg]min_radius
angle_step .

radius_step=r1-12

 player.shadow = off;
 player.transparent = on;
 player.alpha = 100;
 while (player.alpha > 0)
 {
 player.alpha -= 7 * time;
 wait (1);
 }
 player.invisible = on;
 waitt (16);
 min_radius = my.skill11;
 player.x = my.skill1; // set skill1..4 in Wed
 player.y = my.skill2;
 player.z = my.skill3;
 player.pan = my.skill4;
 player.transparent = off;
 player.invisible = off;
 vec_set (strength, my.skill15); // restore player's speed on x, y, z
 vec_set (astrength, my.skill18); // and player's angle speeds

 wait (1);
 }
}

If the player has its shadow flag set, its shadow will disappear; the player will fade away by changing its alpha value. After a second, the player will be moved to its new position set with skills1..4 for x, y, z and pan because sometimes we want the player to face a certain direction after being beamed.

Remember skill15..17 and skill18..20? We have stored the initial strength and astrength in them - now it is the time to get the values back because we want to be able to move the player.

The only think left to be discussed is the particle effect:

function create_fx()
{
 temp.x = random(2) - 1;
 temp.y = random(2) - 1;
 temp.z = random(2) + 1;
 vec_add (my.vel_x, temp);
 my.flare = on;
 my.bright = on;
 my.alpha = 50;
 my.bmap = effect_pcx;
 my.size = 30;
 my.move = on;
 my.lifespan = 100;
 my.function = fade_fx;
}

function fade_fx()
{
 my.alpha -= 2 * time;
 if (my.alpha < 0) {my.lifespan = 0;}
}

You can see that the particles have random speeds on x, y and z but the value on z is always greater than zero so the particles will move upwards, decreasing their alpha value as they go up.

Air combat

This time we have a (let's hope) fun player vs choppers game with lots of interesting features. Every standalone project has its main function:

function main()
{
 sky_clip = -90; // renders the whole sky
 on_d = null; // disables the debug panel
 level_load (aircombat_wmb);
 wait (2);
 game_init();
}

The first line renders the whole sky; it is an open area and we need to see it without any clipping. We disable the "D" key because we will use it for movement, we load the level and when it has loaded we call the game_init() function:

function game_init()
{
 while (player == null) {wait (1);}
 while (1)
 {
 if ((mouse_left == 1) && (player.health > 0)) // fire
 {
 snd_play (shoot_snd, 70, 0);
 ent_create (rocket_mdl, player.pos, move_bullet);
 recoil = 1;
 waitt (2);
 recoil = 0;
 while (mouse_left == 1) {wait (1);} // disable autofire
 }
 temp_counter += 1;
 if (temp_counter == 50)
 {
 temp_counter -= 49;
 }
 if (chopper_index[temp_counter] < distance && chopper_index[temp_counter] > 0)
 {
 distance = chopper_index[temp_counter];
 found_chopper = temp_counter;
 }
 else
 {
 distance = chopper_index[found_chopper];
 }
 if (remaining_choppers == 0)
 {
 aiming_pan.visible = off;
 }
 wait (1);
 }
}

This function waits until the player is created. When this happens, a while (1) loop is started. If we press the left mouse button (LMB) and the player is still alive, a sound is played and a rocket is created at player's position. We set the recoil to 1 for about 0.1 seconds and then we wait until the LMB is released; we'll talk about recoil a little later.

The rest of the code deals with the auto targeting (not aiming) system. If the current chopper is closer than the others and it is a valid chopper, its distance to the player will be stored in a var named distance, otherwise we keep the old distance. When all the choppers are down we hide the target panel.

We can have up to 50 choppers; we measure their distance to the player and the closest chopper will place a target panel on the screen. All you have to do is to make sure that you shoot in its center and the chopper will be hit.

The code that moves the player and the camera is included in the action below:

action player_moves
{
 player = me;
 my.health = 100;
 my.invisible = on;
 my.enable_impact = on;
 my.enable_entity = on;
 my.event = player_event;
 while (my.health > 0)
 {
 vec_set (camera.pos, my.pos);
 camera.tilt += 20 * mouse_force.y * time;
 camera.pan -= 20 * mouse_force.x * time;
 my.pan = camera.pan;
 my.tilt = camera.tilt;
 player_speed.x = 15 * (key_w - key_s) * time - 0.5 * recoil;
 player_speed.y = 10 * (key_a - key_d) * time;
 vec_set (temp, my.x);
 temp.z -= 1000;
 trace_mode = ignore_me + use_box;
 player_speed.z = -trace (my.x, temp);
 move_mode = ignore_you + ignore_passable;
 ent_move(player_speed, nullvector);
 wait (1);
 }
}

The player has 100 health points and it is invisible because we are in 1st person model; it is sensitive at impact with entities. As long as the player is alive, it can be moved using the WSAD keys and the mouse. You can play with the values for camera.pan and tilt, player_speed.x and y to modify the sensitivity and the speed. The speed for the forward movement is stored in player_speed.x; do you remember that we have set recoil to 1 for 0.1 seconds? This way the player will be moved backwards every time it fires a rocket. You can change 0.5 to get different recoils. The movement code includes gravity code so you can use any level (my example is set up in a flat level).

If the player is hit by an entity (the choppers fire sprites) its player_event function will run:

function player_event()
{
 wait (1);
 exclusive_global;
 if (my.health > 0)
 {
 my.health -= 0.5;
 snd_play (playerhit_snd, 40, 0);
 }
 else
 {
 my.health = 0;
 }
}

If the player is alive, its health is decreased and a sound is played. If the player is dead, is health is set to zero because it doesn't look good to see that your dead player has health = -25. Let's take a look at the function that moves player's bullet (a rocket):

function move_bullet()
{
 my.passable = on;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_me;
 my.pan = camera.pan;
 my.tilt = camera.tilt;
 my.skill1 = 0;
 rocket_speed.x = 500 * time;
 rocket_speed.y = 0;
 rocket_speed.z = 0;
 while (my.skill1 < 100)
 {
 if (vec_dist (my.x, player.x) > 50)
 {
 my.passable = off;
 }
 my.roll += 25 * time;
 my.skill1 += 1 * time;
 effect (create_smoke, 1, my.x, normal);
 move_mode = ignore_you + ignore_passable;
 ent_move (rocket_speed, nullvector);
 wait (1);
 }
 ent_remove (me);
}

function remove_me()
{
 waitt (2);
 ent_remove (me);
}

The rocket is passable at the moment of creation but its passable flag will be set to off as soon as the distance between the rocket and the player is over 50 quants. The rocket rotates around its roll angle and creates a smoke trail. If the rocket has travelled too much without hitting anything, it will be removed. The same thing happens when the rocket hits an entity or a level block.

Time to see the functions that create the rocket smoke trail:

function create_smoke
{
 temp.x = random(4) - 2;
 temp.y = random(4) - 2;
 temp.z = random(3) + 3;
 vec_add (my.vel_x, temp);
 my.flare = on;
 my.bright = on;
 my.alpha = 50;
 my.bmap = smoke_pcx;
 my.size = 30;
 my.move = on;
 my.lifespan = 100;
 my.function = fade_smoke;
}

function fade_smoke()
{
 my.alpha -= 2 * time;
 my.size -= 2 * time;
 if ((my.alpha < 0) || (my.size < 2)) {my.lifespan = 0;}
}

The smoke will move upwards; the particles will disappear as soon as their alpha goes below zero or their size goes below 2 (this should happen first if you are using my values, but you can change them).

Every chopper is created by an object that has the action chopper_generator attached to it.

action chopper_generator
{
 my.invisible = on;
 my.passable = on;
 waitt (64 + random (64));
 ent_create (chopper_mdl, my.pos, move_chopper);
}

I have used a cube for every chopper generator; the cube is made invisible and passable. The chopper will be created 4..8 seconds after the level is loaded and the function associated to it is scary :

function move_chopper()
{
 chopper_number += 1;
 remaining_choppers += 1;
 my.skill1 = chopper_number;
 my.enable_impact = on;
 my.enable_block = on;
 my.enable_entity = on;
 my.event = chopper_event;
 my.skill40 = 1;

Every chopper has an unique number associated to it; we are using a var named chopper_number and every time move_chopper() is run, chopper_number is increased and the result is copied in skill1. The chopper will react if it collides with other entities or with level blocks. Finally, we set skill40 to 1 for all the choppers - this will be our method to detect if a certain entity is a chopper or not.

 while (my != null)
 {
 vec_for_vertex(my.skill18, my, 55);
 if (my.skill42 == 0 && abs(my.x + my.y - player.x - player.y) > 2000)
 {
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp);
 }
 my.tilt = 0;
 ent_cycle("fly", my.skill10);
 my.skill10 += my.skill11 * time;
 if (my.skill11 < 10)
 {
 my.skill11 += 0.2 * time; // increase the rotation speed
 }
 if (my.skill10 > 100)
 {
 my.skill10 = 0; // loop animation
 }

As long as the chopper is "alive" we store the vertex that will be used for firing in skill18. If the difference between player's coords and chopper's coords is above 2000 quants, the chopper will rotate and it will move towards the player. We don't need to tilt the chopper but because vec_to_angle does that we set tilt to zero. The chopper will rotate its propeller faster and faster because skill11 is growing from 0 to 10.

 if ((my.skill17 < 3 + random(3)) && (my.skill12 == 0))
 {
 my.skill15 = 0; // skills 15..17 are used a var here
 my.skill16 = 0;
 my.skill17 += 0.05 * time;
 }
 else
 {
 my.skill12 = 1;
 if (my.skill15 < 5 * time)
 {
 my.skill15 += 2 * time;
 }
 my.skill16 = 0;
 my.skill17 = 0;
 if (500 < abs(my.x + my.y - player.x - player.y) < 1000) // close to the player -> fire bullets
 {
 my.skill25 += 3 * time; // a simple counter
 my.skill26 = int (my.skill25);
 if ((my.skill26 % 100 == 0) && (vec_dist (player.x, my.x) > vec_dist (player.x, my.skill18))) // change "100" to adjust the fire rate
 {
 ent_create (bullet_pcx, my.skill18, chopper_bullet); // don't fire until the chopper is up
 }
 }
 }

Every chopper has a random altitude; skill15..17 are used as a var here, with skill15 storing the speed on x, skill16 the speed on y and skill17 the speed on z. You can see that the chopper moves only upwards until skill17 reaches the value set by 3 + random(3); you can change these values if you want to set different heights. When the chopper has reached its maximum height, it stops moving upwards and starts to move faster and faster in the direction given by its pan angle. If the difference between player's coords and chopper's coords is bigger than 500 and smaller than 1000, the chopper will fire bullets.

Now we have to face another challenge: we don't want the chopper to fire 50-100 bullets a second (it wouldn't be fair) but we want it move at 50-100 frames a second in the same while loop. If we would use a waitt(8) at the end of the while loop the chopper would fire 2 bullets a second - and this would be ok - but the chopper would move and change its animation frames only twice a second, right?

The solution is easy: we use a skill and we add to its value every frame. When the content of the skill has reached a certain value, we fire a bullet. I'm using skill26 to store the integer part of skill25; if skill26 % 100 = 0 (in other words, if skill26 = 0 or 100 or 200 or 300 or..) we fire a bullet. The good news is that you can change 100 to any other value to adjust the fire rate.

Wait! I see that the if branch has another weird condition inside it. What's with this line?

 if (.......vec_dist (player.x, my.x) > vec_dist (player.x, my.skill18)

Well, you caught me. This part of the if branch makes sure that the chopper can't shoot with its back! I could have checked player's and chopper's angles but I want to show you as many different things as possible so I have decided to use a trick - take a look at the picture below:

 [image: image20.jpg]

If the distance between the player and chopper's "gun" (stored in skill18) is smaller than the distance between the player and chopper's origin, the chopper will fire. If the distance between the player and the origin is smaller than the distance between the player and the gun, the chopper won't shoot because the player is behind it.

 chopper_index[my.skill1] = vec_dist(my.x, player.x);
 if (distance > chopper_index[my.skill1] - 4000)
 {
 vec_set (temp, my.x);
 if (vec_to_screen (temp, camera)) // if the target is visible
 {
 aiming_pan.pos_x = temp.x - bmap_width(aiming_pcx) / 2;
 aiming_pan.pos_y = temp.y - bmap_height(aiming_pcx) / 2;
 aiming_pan.visible = on;
 }
 else
 {
 aiming_pan.visible = off;
 }
 }
 move_mode = ignore_you + ignore_passable;
 ent_move(my.skill15, nullvector);
 wait (1);
 }
}

The array chopper_index stores the distance between every chopper and the player; if one of the choppers is closer, the target will appear at its position. I have decreased the distance with 4000 quants to add hysteresis - to make sure that the target isn't changing quickly from one target to the other as they come closer and closer to the player. Play with this value - it depends on the size of your level.

If the target is visible on the screen, we set the correct position for the aiming panel and we make it visible, otherwise we hide the panel. Finally, the chopper moves using skills15..17 and ignore passable entities.

If the chopper impacts with a rocket, a wall or with another chopper, its chopper_event() function will run:

function chopper_event()
{
 if (((event_type == event_entity) || (event_type == event_impact)) && (you.skill40 == 1))
 {
 my.pan -= 180;
 my.skill42 = 1;
 waitt (64);
 my.skill42 = 0;
 }
 else
 {
 chopper_index[my.skill1] = 0;
 distance = 20000;
 remaining_choppers -= 1;
 ent_playsound (my, chopperx_snd, 1000);
 my.passable = on;
 my.ambient = 50;
 waitt (2);
 ent_create (explo13_pcx, my.pos, explode_me);
 waitt (4);
 my.transparent = on;
 ent_create (explo13_pcx, my.pos, explode_me);
 ent_remove (me);
 }
}

If the chopper collides with an entity and this entity is another chopper (we've set skill40 to 1 for all the choppers, right?), the chopper will get away for 4 seconds and then it will come back. This happens because the chopper chases the player only if its skill42 is set to zero - check the beginning of the while loop in function move_chopper.

If the chopper collides with a rocket, we won't target it anymore and we set a big distance for it - this makes the closest chopper alive to take control. We play an explosion sound and we create two sprites that overlap and run the same function to make the explosion look better and then we remove the chopper.

function explode_me()
{
 my.oriented = on;
 my.flare = on;
 my.bright = on;
 my.ambient = 100;
 while (my.frame < 14)
 {
 if (my.scale_x < 3)
 {
 my.scale_x += 0.5 * time;
 my.scale_y = my.scale_x;
 }
 my.frame += 1 * time;
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp);
 wait (1);
 }
 ent_remove (me);
}

When the chopper explodes is creates 2 sprites; their scale will grow until it reaches 3 and at the same time their animation frames will run. The sprites will turn towards the player to make sure that the explosion looks great; a simple sprite won't look that good when you shoot a chopper above your head.

Do you feel a little way too tired? We could stop here but there's a little function left to be to discussed:

function chopper_bullet()
{
 my.passable = on;
 my.oriented = on;
 my.flare = on;
 my.bright = on;
 my.scale_x = 0.5;
 my.scale_y = my.scale_x;
 my.enable_entity = on;
 my.enable_block = on;
 my.event = remove_me;

 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (my.pan, temp); // the bullet moves towards the player

 my.skill1 = 0;
 bullet_speed.x = 100 * time;
 bullet_speed.y = 0;
 bullet_speed.z = 0;
 while (my != null)
 {
 if (my.roll > 200) {my.passable = off;} // it works :)
 my.roll += 25 * time;
 my.skill1 += 1 * time;
 move_mode = ignore_you + ignore_passable;
 ent_move (bullet_speed, nullvector);
 wait (1);
 }
}

This function moves chopper's (sprite) bullets. The bullets are passable and they will be rotated towards the player at the moment of creation; if you would put the 3 separate lines in the while loop the player wouldn't be able to dodge any bullet - he would bite the dust every time. The rockets rotate around their roll angle and when roll > 200 their passable flag will be set to off.

I hope that you will enjoy playing with this project - I did!

Smooth model shading

You know the problem: when your models moves from light to darkness, its ambient changes suddenly. The same thing happens when the model moves from dark places to brighter parts of the level. Wouldn't it be nice to have models that smoothly change their ambient light depending on the amount of light in the level? The idea behind this snippet is simple: we set unlit = on for our model in order to make it insensitive to any light source, we get tex_light on the floor below its feet and then we set the ambient of the model depending on tex_light's value.

I wanted to show you the difference between normal shading and smooth shading, so I have placed 2 guards in a test level. One of the guards uses the standard patrol_path action and the other guard uses the new patrol_path_ok action, a slightly modified version of patrol_path:

action patrol_path_ok
{
 actor_init();
 smooth_shadow(); // the only change

 // attach next path
 temp.pan = 360;
 temp.tilt = 180;
 temp.z = 1000;
 result = scan_path(my.x,temp);
 if (result == 0) { my._MOVEMODE = 0; } // no path found

 // find first waypoint
 ent_waypoint(my._TARGET_X,1);

 while (my._MOVEMODE > 0)
 {
 // find direction
 temp.x = MY._TARGET_X - MY.X;
 temp.y = MY._TARGET_Y - MY.Y;
 temp.z = 0;
 result = vec_to_angle(my_angle,temp);

 force = MY._FORCE;

 // near target? Find next waypoint
 // compare radius must exceed the turning cycle!
 if (result < 25) { ent_nextpoint(my._TARGET_X); }

 // turn and walk towards target
 actor_turnto(my_angle.PAN);
 actor_move();

 // Wait one tick, then repeat
 wait(1);
 }
}

You can see that the extra line calls our small function named smooth_shadow. Let's take a look at it:

function smooth_shadow()
{
 my.unlit = on;
 while (1)
 {
 vec_set(temp, my.x);
 temp.z -= 1000;
 trace_mode = ignore_me + ignore_passable + ignore_models + ignore_sprites + scan_texture;
 trace (my.x, temp); // get tex_light
 my.ambient = tex_light / 2.5;
 waitt(4); // trace 4 times a second
 }
}

This function traces 1000 quants below actor's origin in order to get the value of tex_light - the ambient value of the shadow map brightness. Tex_light can range from 0 to 255, so we divide its value by 2.5 in order to set the ambient for the model in the 0..100 range. If you think that your model is too dark you can use any value below 2.5

To see my test level, copy the \smooth folder in your Gamestudio folder, open smooth.wmp, build it and run. You will see 2 guards walking on the same path - I'll let you guess who's the guy that uses smooth shading.

Flickgen

Have you ever wondered if A5 can be used as a wdl - generator? Some of the users have created great particle generators a while ago; you set some values / drag some sliders around and after you click a button a new wdl file is generated. All you have to do is to include it in your project and everything will run great. How is this possible?

First of all you must create a room and set a decent camera position. You create a few sliders / buttons / whatever - they will change what you see. When you are happy with the result, you press a button and a wdl file is created. This file can include comments, etc but you can be sure that it will include the action(s) / function(s) needed for your effect. Sounds easy, right? Let's see how it is done.

Flickgen comes from flickering light generator - this project generates code for flickering lights. You can set the color (RGB), light range, time on and time off. Before we start, take a look at the test.wdl file in the \flickgen folder - its content was generated by Flickgen.

Every standalone project has its own main function:

function main()
{
 d3d_lightres = 1; // better dynamic lights
 level_load (flickgen_wmb);
 wait (2);
 mouse_init();
}

The first line in main improves the quality of the dynamic lights; the test level is loaded and then we show the mouse pointer:

function mouse_init()
{
 mouse_map = arrow_pcx;
 mouse_mode = 2;
 while (1)
 {
 mouse_pos.x = pointer.x;
 mouse_pos.y = pointer.y;
 wait (1);
 }
}

My test level includes a model that has this action attached to it:

action camera_init
{
 my.invisible = on;
 my.passable = on;
 vec_set (camera.pos, my.pos);
 camera.pan = my.pan;
 camera.tilt = my.tilt;
}

I have used an arrow model; change its position and angles to get a better view, because the camera is tied up to this arrow model. The object that generates the flickering lights is a cube model that runs the following action:

action flicker
{
 my.passable = on;
 while (1)
 {
 my.z = height;
 my.lightred = red;
 my.lightgreen = green;
 my.lightblue = blue;
 my.lightrange = distance;
 waitt (interval1);
 my.lightrange = 0;
 waitt (interval2);
 }
}

This action is quite simple, but all the variables in it are controlled by sliders; height is the height of the flickering light source, red green and blue are the values for lightred, lightgreen and lightblue, distance is the value for lightrange, interval1 and interval2 are the on / off values for the light. Let's see how these sliders work:

panel adjust_pan // main panel
{
 bmap = panel_pcx;
 layer = 20;
 pos_x = 0;
 pos_y = 0;
 vslider = 2, 10, 100, slider_pcx, 0, 255, red;
 vslider = 22, 10, 100, slider_pcx, 0, 255, green;
 vslider = 42, 10, 100, slider_pcx, 0, 255, blue;
 vslider = 62, 10, 100, slider_pcx, 1, 100, interval1;
 vslider = 82, 10, 100, slider_pcx, 1, 100, interval2;
 vslider = 102, 10, 100, slider_pcx, 0, 500, distance;
 vslider = 122, 10, 100, slider_pcx, 10, 500, height;
 flags = d3d, overlay, refresh, visible;
}

The first definition places the slider at (2,10) pixels, sets its vertical size to 100 pixels, uses the slider_pcx bitmap for the slider and changes the var named red between 0 and 255. The rest of the sliders work the same way.

If you have opened and run Flickgen you have noticed that the proper RGB, etc values are displayed on the screen. I'm using a simple panel definition for that:

panel digits_pan // shows the rgb... values
{
 layer = 21; // appears over adjust_pan
 pos_x = 0;
 pos_y = 0;
 digits = 0, 130, 3, univers_font, 1, red;
 digits = 20, 140, 3, univers_font, 1, green;
 digits = 40, 130, 3, univers_font, 1, blue;
 digits = 60, 140, 3, univers_font, 1, interval1;
 digits = 80, 130, 3, univers_font, 1, interval2;
 digits = 100, 140, 3, univers_font, 1, distance;
 digits = 120, 130, 3, univers_font, 1, height;
 flags = d3d, overlay, refresh, visible;
}

The value for "red" appears at (0,130) pixels, using 3 digits, with univers_font, its value being multiplied by 1. Flickgen has 2 more buttons: save and quit. In fact, these buttons are 2 small panels - and their definitions are as simple as possible:

panel quit_pan // shows the quit button
{
 bmap = quit_pcx;
 layer = 21; // appears over adjust_pan
 pos_x = 10;
 pos_y = 190;
 flags = d3d, overlay, refresh, visible;
 on_click quit;
}

panel save_pan // shows the save button
{
 bmap = save_pcx;
 layer = 21; // appears over adjust_pan
 pos_x = 10;
 pos_y = 160;
 flags = d3d, overlay, refresh, visible;
 on_click save_file;
}

function quit()
{
 exit; // exit the engine
}

When we press the "Quit" button, its associated quit function will run. You can see that the function simply shuts down the engine - but that's what we want, right? Let me throw in the definitions for 2 texts and a few more strings; we will use them right away:

text action_txt
{
 layer = 21;
 pos_x = 55;
 pos_y = 176;
 font = albertus_font;
 string = action_str;
}

text filename_txt
{
 layer = 21;
 pos_x = 55;
 pos_y = 204;
 font = albertus_font;
 string = filename_str;
}

string action_str = " "; // holds the action name
string filename_str = " "; // holds the file name
string empty_str = ""; // an empty string
string content_str; // holds the content of the file
string indent_str = " "; // 4 spaces here but you can use any other indent value
string temp_str = " "; // just a temporary string used to convert numbers to strings

If we press the "Save" button, the ugly save_file function will run:

function save_file()
{
 action_txt.visible = on; // show the text
 str_cpy (action_str, empty_str);
 while (str_cmpi (action_str, empty_str) == 1) // make sure that the player has typed something
 {
 inkey action_str; // show the cursor -> store the input in filename_str
 wait (1);
 }
 filename_txt.visible = on; // show the text
 str_cpy (filename_str, empty_str); // clear previous inputs
 while (str_cmpi (filename_str, empty_str) == 1) // make sure that the player has typed something
 {
 inkey filename_str; // show the cursor -> store the input in filename_str
 wait (1);
 }
 waitt (16); // wait a second
 action_txt.visible = off; // hide the text
 filename_txt.visible = off; // hide the text

The action_txt text is made visible and then the action_str is cleared. We want to store the name of our new action in action_str; if we call inkey at this point, the player could press the enter key, without typing anything - and this would be bad. We can prevent this from happening by including the inkey instruction in a while loop; if action_str = "" (nothing), inkey keeps running until something is entered in the "Action name" field. The same things happens with the rest of the code that stores the file name in filename_str. The texts are visible for one more second and then they disappear.

 str_cpy (content_str, empty_str); // clear the string
 str_cat (content_str, "// include this file in your main c-script file\n// place any model in your level and attach it the ");
 str_cat (content_str, action_str);
 str_cat (content_str, " action");
 str_cat (content_str, "\n\naction ");
 str_cat (content_str, action_str);
 str_cat (content_str, "\n{\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, "while (1)\n");

The string content_str will be used to store all the text that will be written to our wdl file. Please open the test.wdl file that came with Flickgen or another file created by you with Flickgen, otherwise I might loose you on the way :) The string is cleared and then the commented lines are appended to the string. Our comments should include the name of our action, so we append the named stored in action_str to it. Time to add the word "action" to the 2nd comment line. I hope that you remember: \n will jump to the next line the same way you type Enter in a word processor. After 2 line feeds we begin to write "action", followed by a space and the name stored in action_str. Line feed, a winged bracket, another line feed. Now it is the time to add our indent_str, a string consisting of 4 spaces, and then the text "while (1)" and another line feed. Did you see all this stuff in the generated wdl file? Let's move on:

 str_cat (content_str, indent_str);
 str_cat (content_str, "{\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "my.lightred = ");
 red = int(red);
 str_for_num (temp_str, red);
 str_cat (content_str, temp_str);

We append another indent_str to content_str, a winged bracket and a line feed, 2 indent_str strings and then we append the text: "my.lightred = ". The value set for red by its associated slider is converted to an integer, converted to string and then appended to content_str. The same things happen for green, blue and distance - trust me on that.

 str_cat (content_str, ";\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "my.lightgreen = ");
 green = int(green);
 str_for_num (temp_str, green);
 str_cat (content_str, temp_str);
 str_cat (content_str, ";\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "my.lightblue = ");
 blue = int(blue);
 str_for_num (temp_str, blue);
 str_cat (content_str, temp_str);
 str_cat (content_str, ";\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "my.lightrange = ");
 distance = int(distance);
 str_for_num (temp_str, distance);
 str_cat (content_str, temp_str);

Now it is the time to add the waitt(x) lines; we have a line feed, 2 * indent_str, the "waitt (" string, the integer value of interval1 is converted to string and appended to content_str, we add ")" and move to the next line and so on.

 str_cat (content_str, ";\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "waitt (");
 interval1 = int(interval1);
 str_for_num (temp_str, interval1);
 str_cat (content_str, temp_str);
 str_cat (content_str, ");\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "my.lightrange = 0;\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, indent_str);
 str_cat (content_str, "waitt (");
 interval2 = int(interval2);
 str_for_num (temp_str, interval2);
 str_cat (content_str, temp_str);
 str_cat (content_str, ");\n");
 str_cat (content_str, indent_str);
 str_cat (content_str, "}\n");
 str_cat (content_str, "}");

If you are still awake you will notice that the lines below add .wdl to our file name stored in filename_str, open the file for writing, write content_str in the file and close it. The nightmare is over, can you believe it?

 str_cat (filename_str, ".wdl");
 filehandle = file_open_write (filename_str);
 file_str_write (filehandle, content_str);
 file_close (filehandle);
}

The slider named P (position) moves the light up or down. If you plan to have a flickering light on the ceiling of your room, 300 quants above the floor, you can set P to 300 and see how it will look.
Using this code snippet as a starting point you can create any c-script wizard: particle generators, script editors, etc.

 Music

The good news about "regular" music is that many of its constituent parts are repeating several times during the song, wasting space and increasing the size of the game. More than that, you might have a few quality music loops and you want to create a great song with them. If you were looking for code to achieve at least one of these goals, stop looking: you have discovered music.wdl.

My example uses 4 wav loops (for a total of 1Mb) and it is used to create a song that would have needed about 3Mb. Imagine what you can create with 8 loops (2Mb) and how much space you can save! The idea is (once again) simple: we create a small file in any text editor and we write some numbers inside it; here is the content of my music.dat file (you can use any other name):

1 1 4 4 3 3 1 2 2 3 3

I have told you that I'm using only 4 loops; the data inside the file tells the engine to play "1" twice, "4" twice, "3" twice, "1" once, "2" twice, "3" twice. As soon as one of the loops has stopped, the one that follows it in music.dat will start to play. If the numbers repeat a lot you will save a lot of space, get it?

Let's see the wonderful piece of code that changes the Acknex engine into a sequencer:

var number_of_pieces = 11; // will play 11 music pieces (defined in music.dat)
var file_handle;
var music_handle = 0;
var piece_number;

function start_music()
{
 file_handle = file_open_read("music.dat"); // open the file
 while (number_of_pieces > 0)
 {
 piece_number = file_var_read (file_handle);
 if (piece_number == 1)
 {
 music_handle = snd_play (luke1_snd, 40, 0);
 }
 if (piece_number == 2)
 {
 music_handle = snd_play (luke2_snd, 40, 0);
 }
 if (piece_number == 3)
 {
 music_handle = snd_play (luke3_snd, 40, 0);
 }
 if (piece_number == 4)
 {
 music_handle = snd_play (luke4_snd, 40, 0);
 }
 number_of_pieces -= 1;
 while (snd_playing (music_handle) != 0) {wait (1);}
 wait (1);
 }
 file_close (file_handle);
}

Is this simple or what? First we set the number of musical pieces to 11 (it is the number of figures in music.dat), then we open the file and we read the first number. If piece_number = 1 we will play the 1st loop, it piece_number = 2 we play the second loop and so on. This line:

while (snd_playing (music_handle) != 0) {wait (1);}

makes sure that a single loop is playing at a time. The loops will be played in the order indicated by the figures in music.dat and when number_of_pieces = 0 the song will stop and the file will be closed.

But what should I do if I want to use let's say... 8 loops?
Define the wav files, add if (piece_number == 5..8) etc inside the start_music function and use numbers from 1 to 8 inside the music.dat file. If you want, you can generate random piece_number values and torture your neighbors with the music that is created this way.

Skeletons Inc.

I'm not sure about you, but I feel pity for the old skeleton trying to find its way out... What, you haven't played Sk. Inc. yet?

The goal of this game is to get enough points in order to move to the next level (pretty original, huh?). The number of lives and points and their corresponding texts are displayed with the code below:

panel skinc_pan // displays the numbers
{
 pos_x = 0;
 pos_y = 0;
 digits = 120, 575, 4, skinc_font, 1, lives;
 digits = 650, 575, 4, skinc_font, 1, points;
 flags = refresh, visible;
}

text skinc_txt // displays "Lives:" and "Points:"
{
 pos_x = 0;
 pos_y = 575;
 font = skinc_font;
 string = skinc_str;
 flags = visible;
}

Function main is as simple as possible:

function main()
{
 level_load (skinc_wmb);
 wait (2); // wait for the level to be loaded
 clip_size = 0; // show all the triangles for all the models
 fps_max = 30; // lock the frame rate to 30 fps
}

The camera is attached to an arrow.mdl placed in the level, using the code below:

action init_camera
{
 my.invisible = on;
 while (player == null) {wait (1);}
 vec_set (camera.pos, my.pos);
 while (1)
 {
 camera.arc = max (10, (camera.arc - 2 * time * key_equals)); // press "+" and "-"
 camera.arc = min (70, (camera.arc + 2 * time * key_minusc)); // to zoom in / out
 vec_set (temp.x, player.x);
 vec_sub (temp.x, my.x);
 vec_to_angle (camera.pan, temp); // rotate towards the player
 wait (1);
 }
}

The camera rotates towards the player all the time; the apparent distance between the camera and the player can be changed by pressing "+" and "-". Why apparent distance? Because I'm not changing the distance, but camera.arc which gives a similar effect. Let's look at the action associated to the player:

action skeleton // the player
{
 while (key_any == 1) {wait (1);}
 my.z = 30;
 player = me;
 falling = 0;

The first line waits until all the keys are released; this is useful when we restart the game. The skeleton is placed with its feet on the floor; play with 30 if you use another model and / or level. The variable named falling will be set to 1 if the player is falling and to 0 if it is sitting or walking on solid ground.

 while (lives > 0)
 {
 if (key_cuu == 1)
 {
 my.pan = 0;
 my.skill10 = my.x;
 while ((my.x < my.skill10 + step_width) && (falling == 0))
 {
 ent_cycle("walk", my.skill20);
 my.skill20 += animation_speed * time;
 my.skill20 %= 100;
 my.x += speed * time;
 check_content();
 wait (1);
 }
 }

As long as the player is alive, if we press the "up" arrow, the player will rotate in that direction (pan = 0) and then it will store its current x position in its skill10. As long as the player hasn't walked a distance equal or greater than step_width and if it sits on solid ground, everything inside the while loop will run. This includes the animation and the movement, which is done by simply changing player's x coordinate, because we don't need to check for collisions with other entities. The function check_content will detect if the player is standing on solid ground or not.

The code for the rest of the movement keys (down, left, right) is similar so I will let you look at it; we will meet again close to the end of this function.

 if (key_cud == 1)
 {
 my.pan = 180;
 my.skill10 = my.x;
 while ((my.x > my.skill10 - step_width) && (falling == 0))
 {
 ent_cycle("walk", my.skill20); // play walk frames animation
 my.skill20 -= animation_speed * time; // reversed "walk" animation
 my.skill20 %= 100; // loop the animation
 my.x -= speed * time;
 check_content();
 wait (1);
 }
 }
 if (key_cul == 1)
 {
 my.pan = 90;
 my.skill10 = my.y;
 while ((my.y < my.skill10 + step_width) && (falling == 0))
 {
 ent_cycle("walk", my.skill20); // play walk frames animation
 my.skill20 += animation_speed * time; // "walk" animation speed
 my.skill20 %= 100; // loop the animation
 my.y += speed * time;
 check_content();
 wait (1);
 }
 }
 if (key_cur == 1)
 {
 my.pan = 270;
 my.skill10 = my.y;
 while ((my.y > my.skill10 - step_width) && (falling == 0))
 {
 ent_cycle("walk", my.skill20); // play walk frames animation
 my.skill20 += animation_speed * time; // "walk" animation speed
 my.skill20 %= 100; // loop the animation
 my.y -= speed * time;
 check_content();
 wait (1);
 }
 }
 wait (1);
 }

See? I told you that the rest of the code is similar. Let's take a look at the lines below; if this code runs the player has lost all the lives:

 my.skill20 = 0;
 while (my.skill20 < 100) // the player is dead
 {
 ent_cycle("death", my.skill20); // play death frames animation
 my.skill23 += 5 * time; // "death" animation speed
 wait (1);
 }
}

We reset skill20, because it was used for the "walk" animation and "death" should start from its first frame.

Function check_content() tests the floor and sets falling to 0 if the player walks or stand on solid ground, otherwise falling = 1.

function check_content()
{
 vec_set (temp, my.pos);
 temp.z -= 64;
 if (content (temp) != content_solid) // if it is a hole
 {
 exclusive_global;
 lives -= 1;
 falling = 1;
 snd_play (falling_sound, 70, 0);
 while (player.z > -1000)
 {
 player.z -= 35 * time;
 wait (1);
 }
 sleep (2);
 if (lives > 0)
 {
 points = 0;
 main();
 }
 }
 else
 {
 falling = 0; // walking on solid ground
 }
}

The first line stores player's coordinates in temp, then we substract 64 quants from temp.z; this point should be placed below player's feet (and inside the floor block, you got that right). If content (temp) sees a hole, the player will fall, so we stop all the other instances of the action, we decrease the number of lives, we set falling to 1 (it is needed in action skeleton), we play a falling sound, we move him downwards until its height is about -1000 quants, we wait for 2 seconds, we reset the score, we restart the level, we... oh, I should stop now.

If content(temp) is solid, falling is set to 0 so the player will be able to move ok.

Every sphere that adds points to the score has this action attached to it:

action bonus1
{
 my.passable = on;
 my.transparent = on;
 my.light = on;
 my.bright = on;
 my.lightgreen = 250;
 my.lightrange = 0;
 while (vec_dist (player.x, my.x) > 30)
 {
 my.pan += 3 * time; // rotate if the player is far
 wait (1);
 }
 snd_play (bonus_sound, 30, 0);
 while (my.scale_x < 3)
 {
 my.scale_x += 0.1 * time;
 my.scale_y = my.scale_x;
 my.scale_z = my.scale_x;
 my.z += 0.5 * time;
 my.alpha -= 2 * time;
 wait (1);
 }
 points += 10;
 ent_remove (me);
}

The sphere is passable, transparent and is illuminated by a (green) light. If the player is farther than 30 quants, the sphere will rotate. When the player has come close, we play a sound and then we increase the scale of the sphere until it reaches 3, we move it upwards, we decrease its alpha. We add 10 points to the score and then we remove the sphere.

The game would be boring if we wouldn't use a few tricks; the first one is:

action block_breakable
{
 while (vec_dist (player.x, my.x) > 70) {wait (1);}
 sleep (1.5); // wait 1.5 seconds
 ent_morph (my, "block2.wmb"); // morph the initial block into this one
 snd_play (break_sound, 50, 0);
 sleep (0.1);
 ent_morph (my, "block3.wmb"); // then this block
 sleep (0.1);
 ent_morph (my, "block4.wmb"); // and finally this block
 sleep (0.1);
 while (my.z > -500) // now move the final block downwards
 {
 my.z -= 15 * time;
 wait (1);
 }
 ent_remove (me); // and then remove it
}

This block will break in small pieces if you walk over it, so you will have a limited set of options to complete the level. It sits quietly in the dark until the player has come closer than 70 quants, then waits for 1.5 seconds, then morphs into another block, plays a sound, waits 0.1 seconds, morphs into another block and so on. The last block will be moved downwards until its z is about 500 quants and then it will be removed. You can be sure that the evil check_content() function discussed above will set falling to 1 if you spend too much time sitting on one of these blocks.

The second (and sadly, the last) block is:

action block_end
{
 my.invisible = on;
 my.passable = on;
 while (points < 100) {wait (1);} // will be invisible until the player has 100 points
 my.passable = off;
 my.invisible = off;
 snd_play (finished_sound, 30, 0);
 sleep (0.5);
 my.invisible = on;
 snd_play (finished_sound, 30, 0);
 sleep (0.5);
 my.invisible = off;
 snd_play (finished_sound, 30, 0);
}

This block is like a bridge that gets lowered when you have managed to gather 100 points, but wait! It isn't a bridge and it isn't lowered... Anyway, it is the red block that allows you to get to the end of the level. The block will be invisible and passable until the player has 100 points; as soon as this happens, the block will flash, a sound will be played several times and the player will be able to move towards the flag:

action flag
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) > 50) {wait (1);}
 player.light = on;
 player.lightred = 250;
 player.lightrange = 100;
 sleep (3); // wait for 3 seconds
 exit; // shut down the engine
}

If the player has come close enough to the flag, it will glow red light (it has to celebrate it somehow, right?), and after 3 seconds the engine will shut down. I know that this is a sad idea for "Next Level" but if some of your customers complain about it you can tell them that this game was only a demo and you can give them their money back. Not all of them will complain so you will get something anyway...

 Intelligent elevators

I'm pretty sure that when you read the title of this article you said something like: "Yeah, right... how can you associate elevators with intelligence?" The elevator code in this article will start to work if the player is approaching a switch. The "intelligent" idea is that the switch and its corresponding elevator aren't connected at all! You can use many elevators and many switches and they will know how to work together without using pointers, handles, etc. You will use the same action for every button and for every platform and the code will do the rest! Now that I've got your attention, let's see how it is done.

The idea is (once again) simple: if you create a normal level, the distance between the elevators placed inside the level isn't that small. I am using a button that scans around it and if it finds an elevator entity nearby it starts to use it. Here's the code associated to the elevator button:

action elevator_button
{
 while (1)
 {
 while (vec_dist (player.x, my.x) > 50) {wait (1);}
 temp.pan = 360; // scan on a sphere
 temp.tilt = 360; // because the elevator can be anywhere around this button
 temp.z = 500; // the elevator should be closer than 500 quants all the time
 scan_entity (my.x, temp);
 sleep (0.4); // scan 2 times a second (sleep (0.4 + 0.1))
 my.ambient = 100;
 sleep (0.1);
 my.ambient = 0;
 }
}

If the player approaches the button, the button will start to scan around it on a 500 quants radius. The button will flash because we are changing its ambient.

The action associated to the elevator entity is:

action elevator_entity
{
 if (my.elevator_speed == 0) // if we forget to set skill1 in Wed
 {
 my.elevator_speed = 5; // set the default speed value
 }
 if (my.elevator_height == 0) // if we forget to set skill2 in Wed
 {
 beep; beep; exit; // shut down the engine
 }
 my.enable_scan = on;
 my.event = move_elevator;
}

The elevator has a default speed value; elevator_speed = 5 if we forget to fill in skill1 in Wed. Skill2 is the destination point height (elevator_height) and should be filled every time. I wanted to make sure that you don't forget to do that so the engine will beep two times and then it will shut down if you forget about skill2. If the destination point really needs to be zero, set skill2 to 0.001 or so.

The elevator is sensitive to scanning; when this happens (the player comes close to a button placed close to the elevator), the event will be triggered:

function move_elevator()
{
 proc_kill(1);
 my.enable_scan = off;

We kill all the other instance of this function then we make the elevator insensitive to other scans.

 if (my.z < you.z)
 {
 while (my.z < (player.z - (player.max_z - player.min_z) / 2))
 {
 my.z += my.elevator_speed * time;
 wait (1);
 }
 }

If the elevator is placed behind the button, it must go up until it reaches the height that corresponds to player's feet.

 if (my.z > you.z)
 {
 while (my.z > (player.z - (player.max_z - player.min_z) / 2))
 {
 my.z -= my.elevator_speed * time;
 wait (1);
 }
 }

Same thing here; the elevator goes down until its height is below player's feet.

 my.z = player.z - (player.max_z - player.min_z) / 2;

We set the height of the elevator at player's feet (it was a little smaller or bigger).

[image: image21.jpg]player.max_z

player's feet = player.z - (player.max z - player.min z) / 2

player.min_z

 while (vec_dist (player.x, my.x) > 50) {wait (1);}
 my.enable_scan = on;
 vec_set (player_strength, strength); // store player's speed on x, y, z
 vec_set (strength, nullvector); // stop the player

We wait until the player has come close enough to the center of the platform and then we enable scanning again. We store player's speed (strength) and then we reset strength because we want to stop the player for now (we allow him to rotate).

 while (my.z < my.elevator_height)
 {
 my.z += my.elevator_speed * time;
 player.x = my.x;
 player.y = my.y;
 player.z = my.z + (player.max_z - player.min_z) / 2;
 wait (1);
 }

As long as elevator's z coordinate is below the value set in skill2, its z is increased and the player is kept in the center (and on top) of the platform by changing its x y z coords.

 while (my.z > my.elevator_height)
 {
 my.z -= my.elevator_speed * time;
 player.x = my.x;
 player.y = my.y;
 player.z = my.z + (player.max_z - player.min_z) / 2;
 wait (1);
 }

Same thing here, if the elevator needs to go down.

 vec_set (strength, player_strength);
}

When the elevator his reached its destination, we allow the player to move again by restoring strength.

I have provided an example level with two elevators and two buttons. Of course that you can add as many elevators and buttons as you want, as long as they aren't too close to each other. Play with temp.z = 500 in elevator_button to set different scanning ranges; the distance between my elevators is over 500 quants.

Inventory

This standalone project teaches you how to create an inventory. The player will be able to pick up a mace, a shield, body armor and the ring of fire. He can let them stay in the inventory or he can use them in order to improve its abilities. Let's take a look at the main function:

function main()
{
 level_load (inventory_wmb);
 wait (2);
 clip_size = 0;
 on_d = null; // disable the debug panel (key "D") because it is used for movement
 fps_max = 40;
 check_inventory();
}

I have disabled the "D" key because I'm using WSAD to move the player. Before I throw in the frightening check_inventory function, let's see some defines:

define items skill30;
define armour skill41;
define attack skill42;
define strength skill43;

define shield 1;
define mace 2;
define armor 4;
define ring 8;

When the player picks up an item, its corresponding value is added to player.items (just another name for skill30); if the player collects a shield and a ring, player.items will be 1 (shield) + 8 (ring) = 9, got it? Let's see the function:

function check_inventory()
{
 while (1)
 {
 if (player.items > 0)
 {

If the player has got at least an item (player.items > 0)

 if (player.items == 1) // 1 + 0 + 0 + 0
 {
 shield_pan.visible = on;
 mace_pan.visible = off;
 armor_pan.visible = off;
 ring_pan.visible = off;
 }

If player.items = 1, the player has got the shield; only shield_pan is made visible.

 if (player.items == 2) // 0 + 2 + 0 + 0
 {
 shield_pan.visible = off;
 mace_pan.visible = on;
 armor_pan.visible = off;
 ring_pan.visible = off;
 }

If player.items = 2, the player has got the mace; only mace_pan is made visible.

 if (player.items == 3) // 1 + 2 + 0 + 0
 {
 shield_pan.visible = on;
 mace_pan.visible = on;
 armor_pan.visible = off;
 ring_pan.visible = off;
 }

If player.items = 3, the player has got the shield and the mace; shield_pan and mace_pan are made visible.

The things repeat for player.items = 1...15

 if (player.items == 15) // 1 + 2 + 4 + 8
 {
 shield_pan.visible = on;
 mace_pan.visible = on;
 armor_pan.visible = on;
 ring_pan.visible = on;
 }
 }

If player.items = 15, the player has got all the items so all the panels are made visible.

 else
 {
 shield_pan.visible = off;
 mace_pan.visible = off;
 armor_pan.visible = off;
 ring_pan.visible = off;
 }
 mouse_map = cursor_pcx;
 mouse_pos.x = pointer.x;
 mouse_pos.y = pointer.y;

If player.items = 0, all the panels are invisible; we set the mouse pointer to be cursor_pcx; the position of the mouse will be calculated every frame.

 if (mouse_right == 1)
 {
 mouse_mode = (mouse_mode + 2) % 4;
 while (mouse_right == 1) {wait (1);}
 }
 wait (1);
 }
}

If we press the right mouse button, mouse mode will be set to 0 or 2, depending on how many times we press it. This shows / hides the mouse pointer, allowing us to click the items in the inventory in order to use them. The while loop waits until we release the right mouse button otherwise the pointer would appear / disappear every frame.

I use 5 panels: the main inventory panel and another 4 panels for the items.

panel main_pan // the main panel for the items in the inventory
{
 bmap = main_pcx;
 pos_x = 700;
 pos_y = 0;
 layer = 10;
 hbar = 7, 488, 85, blue_pcx, 1, player.armour;
 hbar = 7, 518, 85, red_pcx, 1, player.attack;
 hbar = 7, 550, 85, green_pcx, 1, player.strength;
 flags = refresh, d3d, visible;
}

The main panel includes 3 hbars that show player's armor (I have used armour because armor is used), attack and strength.

panel shield_pan // displays the shield on the panel
{
 bmap = shield_pcx;
 pos_x = 715;
 pos_y = 30;
 layer = 11;
 flags = overlay, refresh, d3d;
 on_click use_shield;
}

panel mace_pan // displays the mace on the panel
{
 bmap = mace_pcx;
 pos_x = 730;
 pos_y = 145;
 layer = 11;
 flags = overlay, refresh, d3d;
 on_click use_mace;
}

panel armor_pan // displays the armor on the panel
{
 bmap = armor_pcx;
 pos_x = 710;
 pos_y = 255;
 layer = 11;
 flags = overlay, refresh, d3d;
 on_click use_armor;
}

panel ring_pan // displays the ring on the panel
{
 bmap = ring_pcx;
 pos_x = 710;
 pos_y = 365;
 layer = 11;
 flags = overlay, refresh, d3d;
 on_click use_ring;
}

The panels used for the items will appear over the main panel if they are picked up; before I forget, I have created the bitmaps for these panels by placing them inside a black room and taking screenshots. Every item panel has a simple function that will be executed if we click the panel:

function use_shield()
{
 player.items -= shield; // remove the shield from the panel
 ent_create(shield_mdl, player.pos, attach_item);
 player.strength += 30; // bigger hbar
}

We substract shield (1) from player.items; function check_inventory will remove its associated panel from the inventory. We create the "real" shield and we give it to the player, and then we increase strength; the corresponding hbar on the main panel will grow bigger.

function use_mace()
{
 player.items -= mace; // remove the mace from the panel
 ent_create(mace_mdl, player.pos, attach_item);
 player.attack += 50; // bigger hbar
}

We substract mace (2) from player.items; function check_inventory will take care of the rest. We create the mace and give it to the player; the attack hbar will grow.

function use_armor()
{
 player.items -= armor; // remove the armor from the panel
 ent_create(armor_mdl, player.pos, attach_item);
 player.armour += 40; // bigger hbar
}

We substract armor (4) from player.items; function check_inventory removes the panel from the inventory. We create the armor and give it to the player; the armour hbar will grow.

function attach_item()
{
 proc_late();
 my.passable = on;
 my.metal = on;
 my.albedo = 0;
 while(player != null)
 {
 vec_set(my.x, player.x);
 vec_set(my.pan, player.pan);
 my.frame = player.frame;
 my.next_frame = player.next_frame;
 wait(1);
 }
}

These 3 items are glued to the player because of this function:

function attach_item()
{
 proc_late();
 my.passable = on;
 my.metal = on;
 my.albedo = 0;
 while(player != null)
 {
 vec_set(my.x, player.x);
 vec_set(my.pan, player.pan);
 my.frame = player.frame;
 my.next_frame = player.next_frame;
 wait(1);
 }
}

The mace, the shield and the armor were animated together with the player and saved as separate models, so they use the same animation frames all the time. I have created the armor model by deleting all the triangles that weren't needed; I have scaled it up a little to make sure that it looks good on the player.

As long as the player exists, these items are placed at player's position, using its angles and frames all the time.

The ring is a special inventory item - let's see the code:

function use_ring()
{
 player.items -= ring;
 while (1)
 {
 if (mouse_left == 1 && mouse_mode == 0 && number_of_flames == 0) // the mouse pointer is invisible and not too many entities are visible
 {
 temp_angle = 0;
 while (temp_angle < 360)
 {
 temp_angle += 3;
 temp.x = player.x + 100 * cos(temp_angle);
 temp.y = player.y + 100 * sin(temp_angle);
 temp.z = player.z;
 ent_create (fire_pcx, temp, fire_action);
 }
 }
 while (mouse_left == 1) {wait (1);}
 wait(1);
 }
}

We substract ring (8) from player.items and then we enter inside a while (1) loop. If we press the left mouse button and the mouse pointer is invisible and the number of flames is zero, we create 120 flames around the player, 100 quants away from the player and then we wait until we release the left mouse button.

function fire_action()
{
 number_of_flames += 1; // add another flame entity to this var
 my.passable = on;
 my.flare = on;
 my.bright = on;
 my.oriented = on;
 my.pan = random(360);
 while (my.pan < 1500)
 {
 my.pan += (5 + random(3)) * time;
 my.z -= 0.4 * time;
 wait (1);
 }
 number_of_flames -= 1;
 ent_remove (me);
}

We don't want to use autofire on the ring of fire so number_of_flames is increased with every flame that is created; this way we make sure that a single ring of fire can be generated and we keep a decent frame rate. The flames are passable and oriented by a random pan angle; they will rotate until their pan will be 1500 (it works :) and they will decrease their z at the same time. When all the flames have been removed, number_fo_flames is zero and function use_ring can create another ring of fire.

Time to take a look at the actions associated to the items that can be picked up:

action shield_init
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) > 50)
 {
 ent_cycle("idle", my.skill20); // play stand frames animation
 my.skill20 += 3 * time; // "idle" animation speed
 my.skill20 %= 100;
 wait (1);
 }
 player.items += shield;
 ent_remove (me);
}

The shield is passable and plays its "idle" animation until the player comes closer than 50 quants to pick it up. When this happens, player.items is increased with shield (1) and the shield is removed. All the other actions are similar so I'll let you look at them:

action mace_init
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) > 50)
 {
 ent_cycle("idle", my.skill20); // play stand frames animation
 my.skill20 += 3 * time; // "idle" animation speed
 my.skill20 %= 100;
 wait (1);
 }
 player.items += mace;
 ent_remove (me);
}

action armor_init
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) > 50)
 {
 ent_cycle("stand", my.skill20); // play stand frames animation
 my.skill20 += 2 * time; // "stand" animation speed
 my.skill20 %= 100;
 wait (1);
 }
 player.items += armor;
 ent_remove (me);
}

action ring_init
{
 my.passable = on;
 while (player == null) {wait (1);}
 while (vec_dist (my.x, player.x) > 50)
 {
 ent_cycle("frame", my.skill20); // play "frame" animation
 my.skill20 += 2 * time; // "frame" animation speed
 my.skill20 %= 100;
 wait (1);
 }
 player.items += ring;
 ent_remove (me);
}

Ready for the final action? We are talking about player_moves, the action associated to the player:

action player_moves // attached to the player
{
 player = me; // I'm the player
 player.items = 0;
 player.armour = 20;
 player.attack = 30;
 player.strength = 35;

The player starts the game without any item and some values for armour, attack and strength.

 while (1)
 {
 camera.x = player.x - 200 * cos(player.pan);
 camera.y = player.y - 200 * sin(player.pan);
 camera.z = player.z + 200;
 camera.pan = player.pan;
 camera.tilt = -30;

The camera is placed 200 quants behind the player and above the player, looking down at it.

 my.pan += 4 * (key_a - key_d) * time - 20 * mouse_force.x * time;
 player_speed.x = 10 * (key_w - key_s) * time;
 player_speed.y = 0;
 player_speed.z = 0;

The player can rotate using the keys "A" and "D" or the mouse; it can move forward / back with the keys "W" and "S"

 if ((key_w + key_s) != 0)
 {
 ent_cycle("walk", my.skill20);
 my.skill20 += 4 * (key_w - key_s) * time;
 my.skill20 %= 100;
 }

If the player is walking, the model will play its "walk" animation; the animation will be reversed if the player moves backwards.

 else
 {
 if (mouse_left != 1)
 {
 ent_cycle("stand", my.skill20); // play stand frames animation
 my.skill20 += 2 * time; // "stand" animation speed
 my.skill20 %= 100;
 }

If the left mouse button (LMB) isn't pressed, the player is standing so the model will play its "stand" animation.

 else // the player has pressed the left mouse button
 {
 if (ring_pan.visible != on && mouse_mode == 0 && number_of_flames == 0) // the ring has been used
 {
 my.skill20 = 0;
 ent_cycle("attack", my.skill20); // play stand frames animation
 if (my.skill20 < 99)
 {
 my.skill20 += 0.5 * time; // "attack" animation played once (no loop)
 }
 }
 while (mouse_left == 1) {wait (1);}
 }
 }

If LMB is pressed and the ring of fire was used and the mouse pointer is invisible and number_of_flames = 0, the model will play its "attack" animation frames once and then it will freeze at the last frame until we release the LMB.

 move_mode = ignore_passable;
 ent_move(player_speed, nullvector);
 wait (1);
 }
}

Finally, move_mode = ignore_passable allows the player to carry the items without being slowed down by them and the ent_move instruction produces the movement.

Ok, but I would like to kill my enemies using the ring of fire! How can I do that?
The easiest method would be (imo) to make the player scan 100 quants around its current position as long as number_of_flames != 0. Use enemies' events to decrease their health when event_type = event_scan. This way you don't need to perform many time - consuming ent_scan instructions for every flame.

