
3D Gamestudio Programmer's Manual © Conitec February 2003 1

3D GameStudio

Source Development Kit
Programmer's Manual

for A5 Engine 5.51

 Johann C. Lotter / Conitec February 2003

3D Gamestudio Programmer's Manual © Conitec February 2003 2

This manual is protected under the copyright laws of Germany and the U.S. Acknex, A4, A5, and 3D
GameStudio are trademarks of Conitec Corporation. Windows, DirectX and Direct3D are trademarks of
Microsoft, Inc. Any reproduction of the material and artwork printed herein without the written
permission of Conitec is prohibited. We undertake no guarantee for the accuracy of this manual.
Conitec reserves the right to make alterations or updates without further announcement.

3D Gamestudio Programmer's Manual © Conitec February 2003 3

Contents

The A5 plugin interface...4
Getting started with the SDK...4
Using C-Script objects in a DLL..6
Using the API..7
Using Direct3D functions...9
Particle functions..9
Sending information over the network...10
Programming a game in C++...11
DLL interface structures and special functions...12

The A5 Client/Server Protocol..14
Client Messages..14
Server Messages..15

The MDL5 model format..17
MDL file header...17
MDL skin format..17
MDL skin vertices...18
MDL mesh triangles..19
MDL frames...19
MDL bones..21

The HMP5 terrain format...22
HMP file header...22
HMP texture format...22
HMP height values..22

3D Gamestudio Programmer's Manual © Conitec February 2003 4

The A5 plugin interface
What is a DLL? Basically it's an external library that adds functions to a program. A5 DLLs can be used
as "plugin" extensions to the engine and to the C-Script language. For creating an A5 plugin, the SDK
(source development kit) and a development system like VC++ or Delphi is required. DLL plugins are
used for adding new effects, actor AI or new C-Script instructions, as well as for programming a game
totally in C++ or Delphi instead of C-Script. Theoretically everything - MP3 or MOD players, a physics
engine, another 3D engine or even another scripting language - could be added to the engine this
way. Because DLL plugins work with all editions, they can be distributed or sold to other 3D
GameStudio users. On our download and link pages at http://www.3dgamestudio.com you can
already find a lot of useful plugins created with the SDK by GameStudio users.

While the Microsoft Visual C++™ (version 6.0 or .NET) development system normally is
recommended for creating DLL plugins, users have also provided libraries for Borland C++™, C++
Builder™, or Delphi™ up to version 6, which are included in the SDK. Please note however that
Conitec can not give support for user-provided Delphi and Borland libraries. The DLL SDK contains an
example project, which makes it easy to create extensions even for not-so-experienced C or Delphi
programmers who have never written a DLLs before. The SDK license includes the right to freely
distribute DLLs created with it, as long as the DLL functions only provide application functionality. It is
not allowed to distribute DLLs that work as a 'wrapper' for the library by providing functions that allow
direct access of the interface structures or the library functions from outside the DLL.

The following documentation contains just the description of the DLL interface to the C-Script API, and
some examples. The C-Script functions themselves are described in the GameStudio C-Script
Manual. C-Script functions are the API for the DLL as well as for scripts, so you'll definitely need both
manuals for creating DLL plugins.

Getting started with the SDK

You'll find the SDK either as a ZIP file on your key disk, or on a separate SDK disk. You can unzip or
copy the SDK into a directory of your choice, and open it as a VC++ project. The SDK comes with a
DLL source file, ackdll.cpp, that contains some typical examples for DLL functions. Examine the
examples carefully – it's the best way to see how to program DLL functions and access engine
parameters! You can use them as a 'template' for your own DLL.

If you have updated to the most recent SDK version, you'll find the Borland file versions in the BCPP
and Delphi subfolders – read the readme.txt for more information about how to create Borland and
Delphi projects. We are here using VC++ .Net for our following examples. We are also assuming that
you have some basic knowledge of C and C-Script. If not, read a C++ book, and read the first chapter
of the C-Script tutorial before continuing here.

When you create a new project (File->New Project), VC++ offers you a choice of project templates.
Don't select "MFC DLL" here – with VC++ .Net it's the plain Win32 Project, with VC++ 6.0 the
Win32 Dynamic-Link Library that you'll want to create. When the Win32 Application Wizard pops
up, select DLL (.NET) or Simple DLL (6.0) in the application settings and you're done. VC++ now
creates a new DLL project for you. The main .cpp file will look like this:

// plugin.cpp : Defines the entry point for the DLL application.
//
#include "stdafx.h"
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved

)
{
 return TRUE;
}

That's the main entry point of your DLL and you can leave that function unchanged. Copy all of the
SDK files (except the Borland/Delphi subfolders of course) into the folder that is created by VC++.
Now for compiling an A5 plugin DLL, you have to link the a5dll.lib (one of the files of the SDK) to the
project (Project Properties -> Linker Input -> Additional Dependencies), and include the a5dll.h and
a5funcs.h files to your main .cpp file. These 3 files are what you need for creating A5 DLLs. You can
see in the ackdll.cpp example how it should look like.

3D Gamestudio Programmer's Manual © Conitec February 2003 5

Now you can begin to add functions to the DLL that can then later be called by a script, or by the main
function of your game. To be recognized by the engine, all such functions must be of type DLLFUNC
fixed function(...), like this:

// returns the value of x * 2n
DLLFUNC fixed ldexp(fixed x,fixed n)
{

return (FLOAT2FIX(FIX2FLOAT(x)*pow(2.0,FIX2FLOAT(n))));
}

This example function just returns an arithmetic expression of its arguments. DLLFUNC is not a part of
C++ - it's just a convenience shortcut for declaring DLL export functions. fixed is the all-purpose
numeric variable type of A5 and C-Script - a long integer that can be used either as 22.10 fixed point
value, or as a pointer. Both are declared in the a5dll.h together with some conversion functions:

#define DLLFUNC extern "C" __declspec(dllexport)

typedef long fixed; // fixed point 22.10 number format used by C-Script
inline fixed INT2FIX(int i) { return i<<10; }
inline int FIX2INT(fixed x) { return x>>10; }
inline double FIX2FLOAT(fixed x) { return ((double)x)/(1<<10); }
inline fixed FLOAT2FIX(double f) { return (fixed)(f*(1<<10)); }

The engine will pass and expect all numbers – coordinates, variables, no matter what – in fixed
type. So convert any number to fixed before you return it to the engine, like in the example above.

Ready? Now compile your DLL – let's assume that you named it plugin.dll – and copy it into your work
folder. How can we now call our ldexp function by a script? We have to do two things: declare the
function, and open the DLL. The first is achieved by a dllfunction prototype in the script:

dllfunction ldexp(x,n); // declaration of a DLL function

This makes our ldexp function known to C-Script. Before we can call it, we have to open the DLL. A
good place to do this is the main() function of your script:

function main() {
...
dll_open("plugin.dll");

and do not forget to close the DLL before exiting the game:

...
dll_close(dll_handle); // just use the default handle as long as there's only one DLL
exit;

After this is done, you can now enjoy that C-Script has gotten one extra instruction:

...
x = ldexp(y,n); // calculates x = y * 2n

...

For debugging your DLL in VC++, set the command in Project Properties -> Debug to the engine EXE
path (like "C:\program files\gstudio\bin\acknex.exe"), the command arguments to your script and
command line parameters (like "mygame.wdl -wnd") and the working directory to your game
directory (like "C:\program files\gstudio\mygame"). In Project Properties -> General, set the output
directory and the intermediate directory to . (a period, meaning the working directory) for the engine
to find the intermediate files. Then you can compile and debug your DLL by setting breakpoints as
usual.

Ok, this was the basics of writing plugin DLLs. Of course, there's a lot more to learn. The methods for
exchanging data with the engine are described in the following. All DLL functions can be declared and
called in scripts just like each other C-Script function, after having activated the DLL through the
dll_open and dll_close instructions described in the script manual.

3D Gamestudio Programmer's Manual © Conitec February 2003 6

Using C-Script objects in a DLL

We have learned how to add new C-Script instructions, but how can we access C-Script variables,
objects and functions from within a DLL? We have some library functions to do that. All library
functions provided by the SDK are preceded by a5dll_. The most often used function is

long a5dll_getwdlobj(char *name);

This function returns the address of the C-Script object or variable with the given name. It can be
used to read or write any defined C-Script object from inside a DLL plugin. If the object does not exist,
NULL is returned and an error message will pop up. Examples for DLL functions that access C-Script
objects:

 // adds the given value to a C-Script vector
 fixed AddToVector(fixed value)
 {
 // get the address of the variable
 fixed *myvector = (fixed *)a5dll_getwdlobj("myvector");

 // add the same value to the 3 components
 myvector[0] += value;
 myvector[1] += value;
 myvector[2] += value;

 return value;
 }

So you can use this function to obtain a pointer to any C-Script object, no matter whether it's
predefined by the engine or defined in our script. In this case it's a vector which was defined in C-
Script by

var myvector[3] = 1,2,3;

and a5dll_getwdlobj just returns a pointer to this vector, which is, by the way, an array of fixed.
Why don't we have to convert to/from fixed here? Because value is already fixed and we can add two
fixed numbers just as we add two integers (however we could not do this with multiplication and
division!).

It is not wise to obtain the myvector pointer directly in the function where it's needed, the way it's
done here for tutorial purposes. a5dll_getwdlobj executes slow because it has to find the address
in a list. Rather, you would have a global list of pointers to all WDL objects that you need in your DLL,
and obtain the pointers once at the beginning in a startup function by calling a5dll_getwdlobj for
each of them.

So now we know how to read and change a C-Script variable, but how about more complex objects,
like panels, views or entities? Take a look at a5dll.h – there you will find declared all structs known to
C-Script, like A4_STRING, A4_ENTITY, A4_PARTICLE, A4_BMAP, A4_TEX etc. All those struct names
begin with A4_ (even if it's the A5 engine meanwhile). You can get a pointer to such a struct the same
way like to a variable:

 // zooms the camera view
 fixed ZoomIn(fixed value)
 {
 A4_VIEW *camera = (A4_VIEW *)a5dll_getwdlobj("camera");
 return (camera->arc -= value); // change the FOV and return it
 }

"Camera" is our main predefined view. Because a5dll_getwdlobj returns a long integer, you
have to cast it to the desired type, as through the (A4_VIEW *) cast operator here. As you can see
in the struct declarations in a5dll.h, the A4_VIEW struct contains all the parameters that you are
used from C-Script, like arc, ambient etc., and once you have the pointer you can change and read
all of them.

So now we know how to access all C-Script objects, and call DLL functions from C-Script. But how do
we do the opposite – calling engine and C-Script functions from a DLL?

3D Gamestudio Programmer's Manual © Conitec February 2003 7

Using the API

Accessing C-Script functions is done in a similar way like accessing C-Script objects, through:

long a5dll_getwdlfunc(char *name);

This function returns the address of the C-Script instruction with the given name. It can be used to call
engine functions from inside a DLL plugin. Not all C-Script instructions are available for DLLs. If the
instruction is not available because it makes no sense in a DLL (like wait() or inkey()), NULL is
returned and an error message will pop up. Example for an entity AI DLL function that uses C-Script
functions for scanning the environment of an entity:

 // returns free distance in front of MY entity until next obstacle
 fixed DistAhead(long p_ent)
 {
 if (!my) return 0;

 // retrieve the pointer to the given entity
 A4_ENTITY *ent = (A4_ENTITY *)p_ent;

 // get the address of some script variables and functions
 fixed *tracemode = (fixed *)a5dll_getwdlobj("trace_mode");
 wdlfunc2 vecrotate = (wdlfunc2)a5dll_getwdlfunc("vec_rotate");
 wdlfunc2 trace = (wdlfunc2)a5dll_getwdlfunc("trace");

 fixed target[3] = { FLOAT2FIX(1000.0),0,0 }; // trace target vector

 // rotate vector by entity engles, just as in C-Script
 (*vecrotate)((long)target,(long)&(ent->pan));

 // add entity position to target
 target[0] += ent->x;
 target[1] += ent->y;
 target[2] += ent->z;

 // set trace_mode, then trace a line between entity and target,
 // and return the result
 *tracemode = INT2FIX(TRM_IGNORE_ME + TRM_IGNORE_PASSABLE + TRM_USE_BOX);
 return (*trace)((long)&(ent->x),(long)target);
 }

Let's examine the important part of the code in detail:

 wdlfunc2 vecrotate = (wdlfunc2)a5dll_getwdlfunc("vec_rotate");

wdlfunc2 is a convenience typedef for a pointer to a C-Script instruction that takes 2 arguments.
Because all C-Script instructions take either 1, 2, 3, or 4 arguments, there are 4 such typedefs in the
a5dll.h:

typedef fixed (*wdlfunc1)(long);
typedef fixed (*wdlfunc2)(long,long);
typedef fixed (*wdlfunc3)(long,long,long);
typedef fixed (*wdlfunc4)(long,long,long,long);

Once we've gotten the pointer to that instruction – again, it's recommended to retrieve pointers to all
used instructions in a startup function – we can just call it:

 // rotate vector by entity engles, just as in C-Script
 (*vecrotate)((long)target,(long)&(ent->pan));

This looks a little different than you are used to call a function in C++! However, it's quite
straightforward: We have a pointer to that function, so for calling the function itself we have to use
the (*...). And the arguments passed are always fixed or long. We have casted them to long instead of
fixed as a convention to indicate that we are passing pointers. All vector instructions expect pointers
to fixed.

All this pointer handling and typecasting may seem a little complicated at first, but because it's logical
you'll fast get the grip of it.

3D Gamestudio Programmer's Manual © Conitec February 2003 8

What if a C-Script instruction expects not a vector or value, but something more complicated like an
entity? Well, we'll then just pass the A4_ENTITY pointer casted to long. And what if it expects a string
– must we really use a pointer to A4_STRING or can we just pass char*? We must use A4_STRING
I'm afraid. But in the example ackdll.cpp you can find an easy way how to pass a string constant to a
C-Script instruction:

long pSTRING(char* chars) // convenience function to make string passing easy
{

static A4_STRING tempstring;
static char tempname[256];
strncpy(tempname,chars,255);
tempstring.chars = tempname;
return (long)&tempstring;

}

// example for passing a string to create an entity
DLLFUNC fixed create_warlock(long vec_pos)
{

wdlfunc3 ent_create = (wdlfunc3)a5dll_getwdlfunc("ent_create");
return (*ent_create)(pSTRING("warlock.mdl"),vec_pos,0);

}

Some special C-Script functions, like keyboard entry, can not be called directly from a DLL. However
they can be executed indirectly by calling a script that executes that function. Scripts can be called
from a DLL through the following functions:

long a5dll_getscript(char *name);

This function returns an addresss of the user-defined script function with the given name. It can be
used to call user defined C-Script actions or functions from inside a DLL plugin. If the function is not
found, NULL is returned and an error message will pop up.

fixed a5dll_callscript(long script,long p1=0,long p2=0,long p3=0,long p4=0);
fixed a5dll_callname(char *name,long p1=0,long p2=0,long p3=0,long p4=0);

These functions call a user-defined script function with given address or given name. The 4
parameters can be a fixed point number, an array, or a pointer to a C-Script object. If the function
expects less than 4 parameters, the superflous ones can just be set a 0.

Example for a DLL function that calls a function that must be defined in the C-Script code:

DLLFUNC fixed WDLBeep(fixed value)
{
// get the function

long beeptwice = a5dll_getscript("beeptwice");
// call it

return a5dll_callscript(beeptwice,0,0,0,0);
}

This DLL function expects the following function in the C-Script which is then called:

function beeptwice() { beep; beep; } // in the script

Now that we have learned to access every part of C-Script by a DLL and vice versa, let's continue with
some special applications for DLL functions.

3D Gamestudio Programmer's Manual © Conitec February 2003 9

Using Direct3D functions

The following example shows how easy it is to use Direct3D functions for creating some effects on the
screen. As all initialization is done by the engine, it is sufficient just to call the draw functions. All
Direct3D functions are accessed through a LPDIRECT3DDEVICE8 pointer that is available through the
DLL. For details refer to the DirectX documentation that is available, along with the DirectX 8.1 SDK,
from the Microsoft site.

The example paints a multicolored triangle onto the screen. You'll see the triangle briefly flashing in
the upper left corner when you call PaintD3DTriangle() once. If you call it in a wait(1)-loop, the
triangle will be permanently on the screen.

#include <d3dx8.h> // from the DIRECTX8.1 sdk

// dllfunction PaintD3DTriangle();
// draws a red/blue/green triangle in D3D mode
DLLFUNC fixed PaintD3DTriangle (void)
{
// get the active D3D device

LPDIRECT3DDEVICE8 pd3ddev = (LPDIRECT3DDEVICE8) a5dx->pd3ddev8;
if (!pd3ddev) return 0;

// define a suited vertex struct
struct VERTEX_FLAT { float x,y,z; float rhw; D3DCOLOR color; };
#define D3DFVF_FLAT (D3DFVF_XYZRHW | D3DFVF_DIFFUSE)

// define the three corner vertices
VERTEX_FLAT v[3];

v[0].x = 10.0; v[0].y = 10.0; v[0].color = 0xFFFF0000; // the red corner
v[1].x = 310.0; v[1].y = 10.0; v[1].color = 0xFF0000FF; // the blue corner
v[2].x = 10.0; v[2].y = 310.0; v[2].color = 0xFF00FF00; // the green corner

v[0].z = v[1].z = v[2].z = 0.0; // z buffer - paint over everything
v[0].rhw = v[1].rhw = v[2].rhw = 1.0; // no perspective

// begin a scene - needed before D3D draw operations
pd3ddev->BeginScene();

// set some render and stage states (you have to set some more, normally)
pd3ddev->SetRenderState(D3DRS_ALPHABLENDENABLE,FALSE);
pd3ddev->SetTextureStageState(0,D3DTSS_COLORARG2,D3DTA_DIFFUSE);
pd3ddev->SetTextureStageState(0,D3DTSS_COLOROP,D3DTOP_SELECTARG2);

// now draw the triangle
pd3ddev->SetVertexShader(D3DFVF_FLAT);
pd3ddev->DrawPrimitiveUP(D3DPT_TRIANGLEFAN,1,(LPVOID)v,sizeof(VERTEX_FLAT));

// do not forget to do a clean closing of the scene
pd3ddev->EndScene();
return 0;

}

Note: Depending on the 3D hardware, sometimes A5 has to release and reallocate the Direct3D
device when the video output is switched between window and fullscreen mode. If you use the
pd3ddev8 for allocating an object, like a texture or a buffer, you have to release the object before
switching video, and recreate it afterwards. Otherwise the device can't be released and you'll receive
an Uninitialized Device error message.

Particle functions

DLL functions can also be used for particles, using the A4_PARTICLE struct defined in a5dll.h. They
can be used the same way as C-Script defined particle functions. A pointer to the particle is the sole
argument of a DLL particle function. Example:

 // examples for a particle effect function
 // dllfunction DLLEffect_Explo(particle);
 // dllfunction DLLPart_Alphafade(particle);

3D Gamestudio Programmer's Manual © Conitec February 2003 10

 // start the particle effect by
 // effect(DLLEffect_Explo,1000,my.x,nullvector);

 fixed *var_time = NULL;
 long func_alphafade = 0;

 // helper function: fades out a particle
 DLLFUNC fixed DLLPart_Alphafade(long particle)
 {
 if (!var_time || !particle) return 0;
 A4_PARTICLE* p = (A4_PARTICLE*) particle;
 p->alpha -= *var_time * 2;
 if (p->alpha <= 0) p->lifespan = 0;
 return 0;
 }

 // helper function: return a random float
 float random(float max)
 {
 return (float)(rand()*max)/(float)RAND_MAX;
 }

 // particle effect: generate a blue explosion
 DLLFUNC fixed DLLEffect_Explo(long particle)
 {
 if (!particle) return 0;
 // initialize time var and alphafade function (must only be done once)
 if (!var_time)
 var_time = (fixed *)a5dll_getwdlobj("time");
 if (!func_alphafade)
 func_alphafade = a5dll_getscript("DLLPart_Alphafade");
 A4_PARTICLE* p = (A4_PARTICLE*) particle;

 // initialize particle parameters
 p->flags |= EPF_STREAK|EPF_MOVE|ENF_FLARE|ENF_BRIGHT;
 p->vel_x = FLOAT2FIX(random(10) - 5);
 p->vel_y = FLOAT2FIX(random(10) - 5);
 p->vel_z = FLOAT2FIX(random(10) - 5);
 p->red = 0;
 p->green = 0;
 p->blue = INT2FIX(255);
 p->alpha = FLOAT2FIX(50 + random(50));
 p->function = func_alphafade;
 return 0;
 }

Sending information over the network

The SDK can use A5's send and receive functions for sending user-defined messages in a multiplayer
environment. For this, the SendPacket and ReveivePacket function pointers are available via the
ENGINE_INTERFACE:

typedef struct {
 byte *save_block;// pointer to block of variables for save/load (not used)
 int save_size; // size of block of variables for saving (not used)
 long (*Exec)(long n,long p1,long p2,long p3); // DLLLIB internal use only
// only available in A5.51 or above - first packet byte must be 17 (0x11) for user defined packets
 void (*SendPacket)(long to,void *data,long size,long guaranteed); // the send function of the engine
 void (*ReceivePacket)(long from,void *data,long size); // user provided function
 } ENGINE_INTERFACE;

SendPacket sends a user defined packed from the client to the server, or vice versa.

Parameters:
 to - Identifier number for the client to receive the message. Set to 0 for sending to all clients.
 data - Data packet to be sent. First byte must be 17 (0x11) for identifying a user-defined packet.
 size - Size of the packet in bytes.
 guaranteed - set to 1 for TCP/IP mode, 0 for UDP mode.

3D Gamestudio Programmer's Manual © Conitec February 2003 11

ReceivePacket can be set to a user provided void(long,void*,long) function that receives and
interprets messages sent with SendPacket.

Parameters:
 from – ID Number of the sender. If at 0, the message was received from the server.
 data - Data packet to be sent. First byte is always 17 (0x11) for identifying a user-defined packet.
 size - Size of the packet in bytes.

Note that the receive function should be very short and mainly just store the message, for not
interfering the receive process. It must not send, open a file, render, or do anything time consuming.

Programming a game in C++

Using the A4_ENTITY object (see below), a DLL can implement complex AI functions that would be
harder to code in C-Script. Even the whole gameplay could be written in a DLL. The following example
shows how to change entity parameters through a DLL function.

// rolls the given entity by 180 degrees
DLLFUNC fixed FlipUpsideDown(long entity)
{

if (!entity) return 0;

// retrieve the pointer to the given entity
A4_ENTITY *ent = (A4_ENTITY *)entity;

// set the entity's roll angle to 180 degrees
ent->roll = FLOAT2FIX(180);

return 0;
}

This would be called by C-Script through FlipUpsideDown(my). For controlling entities totally
through a DLL – for instance, when you intend to write your whole game in C++ or Delphi, instead of
C-Script – C-Script dummy actions can be assigned to the entity, like this:

var appdll_handle;
dllfunction dll_entmain(entity);
dllfunction dll_entevent(entity);

function main()
{
// open the application DLL

appdll_handle = dll_open("myapp.dll");
...

}

action myent_event {
dll_handle = appdll_handle;
dll_entevent(my); // this DLL function handles all entity events

}

action myentity {
my.event = myent_event;
while(1) {

dll_handle = appdll_handle;
dll_entmain(my); // this DLL function controls the entity
wait(1);

}
}

3D Gamestudio Programmer's Manual © Conitec February 2003 12

DLL interface structures and special functions

Interface structs are initialized at DLL startup for accessing essential engine variables and pointers.
There are three such interfaces, which are defined in the a5dll.h: the WDL_INTERFACE a5wdl that
contains C-Script access functions and he MY and YOU entity pointers, the ENGINE_INTERFACE
a5eng that contains basic engine functions, and the DX_INTERFACE a5dx that contains pointers to
all DirectX devices initialized by A5. Normally you'll only need the last one. For instance, a5dx-
>pd3ddev8 will get you the pointer to the Direct3D 8.1 device.

Some utility functions are provided for manipulation of textures and entities:

A4_TEX *a5dll_tex4ent(A4_ENTITY *entity,int frame,int texnum=0);

This function returns the texture of a sprite, model or terrain entity. It can be used to directly access
D3D textures (see example below). Frame is the frame or skin number, texnum the subtexture
number if it is split into several subtextures.

A4_ENTITY *a5dll_entnext(A4_ENTITY *entity);

This function enumerates local entities, and can be used to access all entities in a level. If called with
NULL, it returns a pointer to the first entity in the level. If called with a level entity pointer, it returns a
pointer to the next level entity. If called with a pointer to the last entity or no entity at all, it returns
NULL.

Example for a function that uses DirectX 8.1 for painting the textures of model, sprite and terrain
entities red:

// dllfunction PaintEntitiesRed();
// paints the first mipmap of all sprite and model entities red
DLLFUNC fixed PaintEntitiesRed(void)
{
// find the first entity in the level

A4_ENTITY *ent = NULL;
while (1) {

// find the next entity
ent = a5dll_entnext(ent);
if (!ent) break;

// we can not be sure that the entity texture exists - it could be purged
A4_TEX *tex = a5dll_tex4ent(ent,0,0);
if (!tex) continue;
LPDIRECT3DTEXTURE8 dx8tex = (LPDIRECT3DTEXTURE8) tex->pd3dtex;
if (!dx8tex) continue;

// check the texture format
D3DSURFACE_DESC ddsd;
if (FAILED(dx8tex->GetLevelDesc(0,&ddsd))) continue;

// lock the texture and retrieve a pointer to the surface
D3DLOCKED_RECT d3dlr;
if (FAILED(dx8tex->LockRect(0,&d3dlr,0,0))) continue;
byte *pixels = (byte *)(d3dlr.pBits);

// do we have a 16 bit or 32 bit format?
if (ddsd.Format == D3DFMT_A8R8G8B8)

for (unsigned y = 0; y < ddsd.Height; y++) {
DWORD *target = (DWORD *)(pixels + y*d3dlr.Pitch);
for (unsigned x = 0; x < ddsd.Width; x++)

*target++ = 0xFFFF0000; // that's red in 8888
}

else if (ddsd.Format == D3DFMT_A4R4G4B4)
for (unsigned y = 0; y < ddsd.Height; y++) {

WORD *target = (WORD *)(pixels + y*d3dlr.Pitch);
for (unsigned x = 0; x < ddsd.Width; x++)

*target++ = 0xFF00; // that's red in 4444
}

else if (ddsd.Format == D3DFMT_A1R5G5B5)
for (unsigned y = 0; y < ddsd.Height; y++) {

WORD *target = (WORD *)(pixels + y*d3dlr.Pitch);

3D Gamestudio Programmer's Manual © Conitec February 2003 13

for (unsigned x = 0; x < ddsd.Width; x++)
*target++ = 0xFC00; // that's red in 1555

}
else if (ddsd.Format == D3DFMT_R5G6B5)

for (unsigned y = 0; y < ddsd.Height; y++) {
WORD *target = (WORD *)(pixels + y*d3dlr.Pitch);
for (unsigned x = 0; x < ddsd.Width; x++)

*target++ = 0xF800; // that's red in 565
}

// Unlock the surface again
dx8tex->UnlockRect(0);

}

a5dll_errormessage("Entities are now red!");
return 0;

}

void a5dll_errormessage(char *text);

This function pops up an Error #1527 message requester with the given text. It can be used to display
diagnostic messages, or notify the user of wrong DLL calls, like with an invalid entity pointer.

One final consideration. On accessing system resources like sound, video, joystick and so on, the DLL
must take care of possible resource conflicts. The engine shares its resources and expects the same
from the code inside the DLL. For instance, code that requires exclusive access to the sound device
(like some old MOD players) won't work. Some resources (like the midi player) can't be shared - if
midi music is played by the DLL, the engine must not play a midi file at the same time and vice versa.

3D Gamestudio Programmer's Manual © Conitec February 2003 14

The A5 Client/Server Protocol
The protocol is optimized for using as less bandwidth as possible. Only parameters that have changed
are sent over the network. Sending a player's changed XYZ coordinate from the server to the client,
for instance, needs only 12 bytes (including header). A dead reckoning mechanism is used for
extrapolating positions and angles between cycles.

The structure of the messages is a single-byte code, followed by code-dependant informations. When
describing the content of messages, we use the following conventions:

Byte = an unsigned integer, on one byte.
Short = a signed integer, on two bytes, Big Endian order (Intel order).
Long = a signed integer, on four bytes, Big Endian order (Intel order).
Float = a floating point number, on four bytes, Big Endian order (Intel order).
Fixed = a fixed point number in 22.10 format, on four bytes, Big Endian order (Intel order).
String = a sequence of characters, terminated by 0 ('\0')
Angle = a short, to be multiplied by 360.0/65535.0 to convert it to degrees.
Position = a coordinate packed in three bytes by dividing it by 8
CPosition = either Position or Fixed, depending on the pos_resolution variable
Scale(x) = a value packed into one byte to be multiplied by x/255.0.

Client Messages

The following commands are used for transferring information from a client to the server.

Command Bytecode Arguments Description

cls_fill 0x01 Filler byte for inflating UDP messages
to a minimum length. Can be ignored.

cls_join 0x02 String Player_Name Request for joining the session (TCP).

cls_create 0x03 String File_Name
Position Start[3]
Short Action_Index
Short Identifier

Request creating an entity with given
model name, and link the client to it
(TCP).

cls_remove 0x04 Long Entity_Index Request removing entity on the server
(TCP).

cls_ping 0x07 Sent after each client frame (UDP). If a
client does not send anything for more
than 5 seconds, it is automatically
disconnected by the server.

cls_level 0x09 String Level_Name Inform server that client has loaded a
level (TCP).

cls_var 0x0a Short Var_Index
Short Var_Length
Fixed Var[Var_Length]

Send a variable or an array (TCP).

cls_string 0x0b Short String_Index
String Text

Send a string (TCP).

cls_skill 0x0e Short Entity_Index
Short Struct_Offset
Fixed Skill

Send an entity skill (TCP).
Struct_Offset gives the byte offset
of the skill in the A4_ENTITY struct.

cls_skill3 0x0f Short Entity_Index
Short Struct_Offset
Fixed Skill[3]

Send an entity vector skill (TCP).

3D Gamestudio Programmer's Manual © Conitec February 2003 15

Server Messages

The following commands are used for transferring information from the server to either a specific
client, or to all clients connected. Server-client communication uses the reliable TCP protocol for
important messages, and the unreliable UDP protocol for unimportant messages.

Command Bytecode Arguments Description

svc_fill 0x01 Filler byte for inflating UDP packets to
at least 8 bytes (can be ignored).

svc_create 0x03 Short Entity_Index
Short Identifier

Created entity with given index (TCP).

svc_remove 0x04 Short Entity_Index Removed entity from server (TCP).

svc_entsound 0x05 Short Entity_Index
Short Sound_Index
Scale(2000) Volume
Long Sound_Handle

Play an entity sound on the clients
(UDP).

svc_effect 0x06 Short Action_Index
Short Number
Position Start[3]
Fixed Vel[3]

Generate a particle or beam effect on
the clients (UDP).

svc_info 0x07 Long 0x11191218
Byte Protocol_Version
Float Server_Time
Float Frame_Time

Send a sync value and the server time
to the clients (TCP). This is sent once a
frame.

svc_var 0x0a Short Var_Index
Short Var_Length
Fixed Var[Var_Length]

Send a variable to the client (TCP).

svc_string 0x0b Short String_Index
String Text

Send a string to the client (TCP).

svc_skill 0x0e Short Entity_Index
Short Struct_Offset
Fixed Skill

Send an entity skill to the client (TCP).
Struct_Offset gives the byte offset
of the skill in the A4_ENTITY struct.

svc_skill3 0x0f Short Entity_Index
Short Struct_Offset
Fixed Skill[3]

Send an entity vector skill to the client
(TCP).

svc_local 0x12 Short Entity_Index
Short Function_Index

Start the given function with the given
MY entity on the client (TCP).

svc_update1 0x40..0x7f Short Entity_Index
(Parameters see below)

Update entity parameters 1 (UDP).

svc_update2 0x80..0xbf Short Entity_Index
(Parameters see below)

Update entity parameters 2 (UDP).

svc_update3 0xc0..0xff Short Entity_Index
(Parameters see below)

Update entity parameters 3 (UDP).

For the 3 entity parameter update messages, bits 0..5 of the svc_update bytecode give the
parameter combination to be sent or received, in the order given below. All parameters are sent
through the UDP protocol.

Parameter Update.Bit Arguments Remarks

position 2.0 CPosition Pos[3] XYZ position

pan 2.1 Angle Pan
tilt 2.2 Angle Tilt
roll 2.3 Angle Roll

3D Gamestudio Programmer's Manual © Conitec February 2003 16

Parameter Update.Bit Arguments Remarks

frame 2.4 Short Frame_Int
Scale(1) Frame_Frc
Short Nextframe

Frame number, tweening factor,
tweening target

flags1 2.5 Short Flags 8..23
type 1.0 String File_Name Name of the mdl, wmb, pcx, etc. file

scale 1.1 Short Scale[3] XYZ scale*0.25

ambient 1.3 Scale(100) Ambient
albedo 1.4 Scale(255) Albedo
skin 1.2 Byte Skin Skin number

lightrange 3.0 Scale(2000) Lightrange
color 3.1 Scale(255)

Red,Green,Blue
RBG color packed in 3 bytes

alpha 3.2 Scale(100) Alpha
uv 3.3 Fixed U,V UV offset or speed for entity textures

For instance, the code sequence

0x83 0x07 0x00 0x80 0x00 0x00 0x00 0x01 0x00 0x80 0x01 0x00 0x80 0x00

updates position and pan angle (0x83 has bits 0 and 1 set) of entity No. 7 (0x07 0x00). The position
uses the packed format and is set at coordinates x=1 (0x80 0x00 0x00), y=2 (0x00 0x01 0x00)
and z=3 (0x80 0x01 0x00), and the pan angle is set at 180 degrees (0x80 0x00).

3D Gamestudio Programmer's Manual © Conitec February 2003 17

The MDL5 model format
Despite the engine uses model files with .MDL extension, it's internal MDL5 format differs from the
Quake MDL format. A wireframe mesh, made of triangles, gives the general shape of a model. 3D
vertices define the position of triangles. For each triangle in the wireframe, there will be a
corresponding triangle cut from the skin picture. Or, in other words, for each 3D vertex of a triangle
that describes a XYZ position, there will be a corresponding 2D vertex positioned that describes a UV
position on the skin picture.

It is not necessary that the triangle in 3D space and the triangle on the skin have the same shape (in
fact, it is normally not possible for all triangles), but they should have shapes roughly similar, to limit
distortion and aliasing. Several animation frames of a model are just several sets of 3D vertex
positions. The 2D vertex positions always remain the same.

A MDL file contains:
- A list of skin textures in 8-bit palettized, 16-bit 565 RGB or 16 bit 4444 ARGB format.
- A list of skin vertices, that are just the UV position of vertices on the skin texture.
- A list of triangles, which describe the general shape of the model.
- A list of animation frames. Each frame holds a list of 3D vertices.
- A list of bone vertices, which are used for creating the animation frames.

MDL file header

Once the file header is read, all the other model parts can be found just by calculating their position in
the file. Here is the format of the .MDL file header:

typedef float vec3[3];

typedef struct {
 char version[4]; // "MDL3", "MDL4", or "MDL5"
 long unused1; // not used
 vec3 scale; // 3D position scale factors.
 vec3 offset; // 3D position offset.
 long unused2; // not used
 vec3 unused3; // not used
 long numskins ; // number of skin textures
 long skinwidth; // width of skin texture, for MDL3 and MDL4;
 long skinheight; // height of skin texture, for MDL3 and MDL4;
 long numverts; // number of 3d wireframe vertices
 long numtris; // number of triangles surfaces
 long numframes; // number of frames
 long numskinverts; // number of 2D skin vertices
 long flags; // always 0
 long numbones; // number of bone vertices (not used yet)
} mdl_header;

The size of this header is 0x54 bytes (84).

The MDL3 format is used by the A4 engine, while the newer MDL4 and MDL5 formats are used by
the A5 engine, the latter supporting mipmaps. After the file header follow the skins, the skin vertices,
the triangles, the frames, and finally the bones (in future versions).

MDL skin format

The model skins are flat pictures that represent the texture that should be applied on the model.
There can be more than one skin. You will find the first skin just after the model header, at offset
baseskin = 0x54. There are numskins skins to read. Each of these model skins is either in 8-bit
palettized (type == 0), in 16-bit 565 format (type == 2) or 16-bit 4444 format (type == 3). The
skin structure in the MDL3 and MDL4 format is:

typedef byte unsigned char;
typedef struct {
 int skintype; // 0 for 8 bit (bpp == 1), 2 for 565 RGB, 3 for 4444 ARGB (bpp == 2)
 byte skin[skinwidth*skinheight*bpp]; // the skin picture
} mdl_skin_t;

3D Gamestudio Programmer's Manual © Conitec February 2003 18

In the MDL5 format the skin is a little different, because now mipmaps can be stored and the model
skins have not necessarily the same size. If the skin contains mipmaps, 8 is added to the skintype.
In that case the 3 additional mipmap images follow immediately after the skin image. The texture
width and height must be divisible by 8. 8 bit skins are not possible anymore in combination with
mipmaps.

typedef word unsigned short;
typedef struct {
 long skintype; // 2 for 565 RGB, 3 for 4444 ARGB, 10 for 565 mipmapped, 11 for 4444 mipmapped (bpp = 2),

// 5 for 8888 ARGB, 13 for 8888 ARGB mipmapped (bpp = 4)
 long width,height; // size of the texture
 byte skin[bpp*width*height]; // the texture image
 byte skin1[bpp*width/2*height/2]; // the 1st mipmap (if any)
 byte skin2[bpp*width/4*height/4]; // the 2nd mipmap (if any)
 byte skin3[bpp*width/8*height/8]; // the 3rd mipmap (if any)
} mdl5_skin_t;

8 bit skins are a table of bytes, which represent an index in the level palette. If the model is rendered
in overlay mode, index 0x00 indicates transparency. 16 bit skins in 565 format are a table of unsigned
shorts, which represent a true colour with the upper 5 bits for the red, the middle 6 bits for the green,
and the lower 5 bits for the blue component. Green has one bit more because the human eye is more
sensitive to green than to other colours. If the model is rendered in overlay mode, colour value
0x0000 indicates transparency. 16 bit alpha channel skins in 4444 format are represented as a table
of unsigned shorts with 4 bits for each of the alpha, red, green, and blue component. 32 bit alpha
channel skins in 8888 format are represented as a table of unsigned long integers with 4 bytes for
each of the alpha, red, green, and blue component. Note that the byte order in that case is Intel
order: blue, green, red, alpha.

The size width and heights of skins should be a multiple of 4, to ensure long word alignement. When
using mipmaps, they must be a multiple of 8. The skin pictures are usually made of as many pieces as
there are independent parts in the model. For instance, for a player, there may be several pieces that
defines the body, the face, the hands, and the weapon.

MDL skin vertices

The list of skin vertices indicates only the position on texture picture, not the 3D position. That's
because for a given vertex, the position on skin is constant, while the position in 3D space varies with
the animation. The list of skin vertices is made of these structures:

typedef struct
{
 short u; // position, horizontally in range 0..skinwidth-1
 short v; // position, vertically in range 0..skinheight-1
} mdl_uvvert_t;

Illustration 1: Samurai skin

3D Gamestudio Programmer's Manual © Conitec February 2003 19

mdl_uvvert_t skinverts[numskinverts];

u and v are the pixel position on the skin picture. The skin vertices are stored in a list, that is stored at
offset basestverts = baseskin + skinsize. skinsize is the sum of the size of all skin
pictures. If they are all 8-bit skins, then skinsize = (4 + skinwidth * skinheight) *
numskins. If they are 16-bit skins without mipmaps, then skinsize = (4 + skinwidth *
skinheight * 2) * numskins.

MDL mesh triangles

The model wireframe mesh is made of a set of triangle facets, with vertices at the boundaries.
Triangles should all be valid triangles, not degenerates (like points or lines). The triangle face must be
pointing to the outside of the model. Only vertex indexes are stored in triangles. Here is the structure
of triangles:

typedef struct {
short index_xyz[3]; // Index of 3 3D vertices in range 0..numverts
short index_uv[3]; // Index of 3 skin vertices in range 0..numskinverts

} mdl_triangle_t;

mdl_triangle_t triangles[numtris];

At offset basetri = baseverts + numskinverts * sizeof(uvvert_t) in the .MDL file you
will find the triangle list.

MDL frames

A model contains a set of animation frames, which can be used in relation with the behavior of the
modeled entity, so as to display it in various postures (walking, attacking, spreading its guts all over
the place, etc). Basically the frame contains of vertex positions and normals. Because models can
have ten thousands of vertices and hundreds of animation frames, vertex posistion are packed, and
vertex normals are indicated by an index in a fixed table, to save disk and memory space.

Each frame vertex is defined by a 3D position and a normal for each of the 3D vertices in the model.
In the MDL3 format, the vertices are always packed as bytes; in the MDL4 format that is used by the
A5 engine they can also be packed as words (unsigned shorts). Therefore the MDL4 format allows
more precise animation of huge models, and inbetweening with less distortion.

typedef struct {
 byte rawposition[3]; // X,Y,Z coordinate, packed on 0..255
 byte lightnormalindex; // index of the vertex normal
} mdl_trivertxb_t;

typedef struct {
 unsigned short rawposition[3]; // X,Y,Z coordinate, packed on 0..65536

Illustration 2: Samurai skin with uv mapping

3D Gamestudio Programmer's Manual © Conitec February 2003 20

 byte lightnormalindex; // index of the vertex normal
 byte unused;
} mdl_trivertxs_t;

To get the real X coordinate from the packed coordinates, multiply the X coordinate by the X scaling
factor, and add the X offset. Both the scaling factor and the offset for all vertices can be found in the
mdl_header struct. The formula for calculating the real vertex positions is:

float position[i] = (scale[i] * rawposition[i]) + offset[i];

The lightnormalindex field is an index to the actual vertex normal vector. This vector is the average of
the normal vectors of all the faces that contain this vertex. The normal is necessary to calculate the
Gouraud shading of the faces, but actually a crude estimation of the actual vertex normal is sufficient.
That's why, to save space and to reduce the number of computations needed, it has been chosen to
approximate each vertex normal. The ordinary values of lightnormalindex are comprised between 0
and 161, and directly map into the index of one of the 162 precalculated normal vectors:

float lightnormals[162][3] = {
{-0.525725, 0.000000, 0.850650}, {-0.442863, 0.238856, 0.864188}, {-0.295242, 0.000000, 0.955423},
{-0.309017, 0.500000, 0.809017}, {-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
{0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718}, {0.147621, 0.716567, 0.681718},
{0.000000, 0.525731, 0.850651}, {0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
{0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188}, {0.162460, 0.262866, 0.951056},
{-0.681718, 0.147621, 0.716567}, {-0.809017, 0.309017, 0.500000}, {-0.587785, 0.425325, 0.688191},
{-0.850651, 0.525731, 0.000000}, {-0.864188, 0.442863, 0.238856}, {-0.716567, 0.681718, 0.147621},
{-0.688191, 0.587785, 0.425325}, {-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
{-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621}, {-0.500000, 0.809017, -0.309017},
{-0.525731, 0.850651, 0.000000}, {0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
{0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460}, {0.000000, 1.000000, 0.000000},
{0.000000, 0.955423, 0.295242}, {-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
{0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017}, {0.238856, 0.864188, -0.442863},
{0.262866, 0.951056, -0.162460}, {0.500000, 0.809017, -0.309017}, {0.850651, 0.525731, 0.000000},
{0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621}, {0.525731, 0.850651, 0.000000},
{0.425325, 0.688191, 0.587785}, {0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
{0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567}, {0.587785, 0.425325, 0.688191},
{0.955423, 0.295242, 0.000000}, {1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
{0.850651, -0.525731, 0.000000}, {0.955423, -0.295242, 0.000000}, {0.864188, -0.442863, 0.238856},
{0.951056, -0.162460, 0.262866}, {0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
{0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856}, {0.809017, 0.309017, -0.500000},
{0.951056, 0.162460, -0.262866}, {0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
{0.681718, -0.147621, -0.716567}, {0.850651, 0.000000, -0.525731}, {0.809017, -0.309017, -0.500000},
{0.864188, -0.442863, -0.238856}, {0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
{0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785}, {0.442863, 0.238856, -0.864188},
{0.587785, 0.425325, -0.688191}, {0.688197, 0.587780, -0.425327}, {-0.147621, 0.716567, -0.681718},
{-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651}, {-0.525731, 0.000000, -0.850651},
{-0.442863, 0.238856, -0.864188}, {-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
{0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423}, {0.162460, 0.262866, -0.951056},
{-0.442863,-0.238856, -0.864188}, {-0.309017,-0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
{0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718}, {0.147621, -0.716567, -0.681718},
{0.000000, -0.525731, -0.850651}, {0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
{0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863}, {0.500000, -0.809017, -0.309017},
{0.425325, -0.688191, -0.587785}, {0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
{0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242}, {0.000000, -1.000000, 0.000000},
{0.262866, -0.951056, -0.162460}, {0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
{0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460}, {0.500000, -0.809017, 0.309017},
{0.716567, -0.681718, 0.147621}, {0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
{-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460}, {-0.850651, -0.525731, 0.000000},
{-0.716567, -0.681718, -0.147621}, {-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
{-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863}, {-0.262866, -0.951056, 0.162460},
{-0.864188, -0.442863, 0.238856}, {-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
{-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188}, {-0.587785, -0.425325, 0.688191},
{-0.309017, -0.500000, 0.809017}, {-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
{-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188}, {0.162460, -0.262866, 0.951056},
{0.309017, -0.500000, 0.809017}, {0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
{0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191}, {0.688191, -0.587785, 0.425325},
{-0.955423, 0.295242, 0.000000}, {-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
{-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000}, {-0.951056, -0.162460, 0.262866},
{-0.864188, 0.442863, -0.238856}, {-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
{-0.864188,-0.442863, -0.238856}, {-0.951056,-0.162460, -0.262866}, {-0.809017, -0.309017, -0.500000},
{-0.681718, 0.147621, -0.716567}, {-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},

3D Gamestudio Programmer's Manual © Conitec February 2003 21

{-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191}, {-0.425325, 0.688191, -0.587785},
{-0.425325,-0.688191, -0.587785}, {-0.587785,-0.425325, -0.688191}, {-0.688197,-0.587780, -0.425327}

};

A whole frame has the following structure:

typedef struct {
 long type; // 0 for byte-packed positions, and 2 for word-packed positions
 mdl_trivertx_t bboxmin,bboxmax; // bounding box of the frame
 char name[16]; // name of frame, used for animation
 mdl_trivertx_t vertex[numverts]; // array of vertices, either byte or short packed
} mdl_frame_t;

The size of each frame is sizeframe = 20 + (numverts+2) * sizeof(mdl_trivertx_t),
while mdl_trivertx_t is either mdl_trivertxb_t or mdl_trivertxs_t, depending on
whether the type is 0 or 2. In the MDL3 format the type is always 0. The beginning of the frames
can be found in the .MDL file at offset baseframes = basetri + numtris *
sizeof(mdl_triangle_t).

MDL bones

This is for future expansion of the MDL format, and not supported yet.

Bones are a linked list of 3D vertices that are used for animation in the MDL5 format. Each bone
vertex can have a parent, and several childs. If a bone vertex is moved, the childs move with it. If on
moving a bone vertex the connection line to his parent rotates, it's childs are rotated likewise about
the parent position. If the distance of the bone vertex to its parent changes, the change is added onto
the distance between childs and parent. So the movement of the childs is done in a spherical
coordinate system, it is a combination of a rotation and a radius change.
Each bone vertex has an influence on one or more mesh vertices. The mesh vertices influenced by a
bone vertex move the same way as it's childs. If a mesh vertex is influenced by several bone vertices,
it is moved by the average of the bone's movement.

3D Gamestudio Programmer's Manual © Conitec February 2003 22

The HMP5 terrain format
A terrain is basically a rectangular mesh of height values with one or several surface textures. It is a
simplified version of the GameStudio Model format, without all the data structures that are
unnecessary for terrain.

HMP file header

Once the file header is read, all the other terrain parts can be found just by calculating their position
in the file. Here is the format of the .HMP file header:

typedef float vec3[3];

typedef struct {
 char version[4]; // "HMP4" or "HMP5"; only the newer HMP5 format is described here
 long nu1; // not used
 vec3 scale; // heightpoint scale factors
 vec3 offset; // heightpoint offset
 long nu6; // not used
 float ftrisize_x; // triangle X size
 float ftrisize_y; // triangle Y size
 float fnumverts_x; // number of mesh coordinates in X direction
 long numskins ; // number of textures
 long nu8,nu9; // not used
 long numverts; // total number of mesh coordinates
 long nu10; // not used
 long numframes; // number of frames
 long nu11; // not used
 long flags; // always 0
 long nu12; // not used
} hmp_header;

The size of this header is 0x54 bytes (84).

The "HMP4" format is used by the A5 engine prior to 5.230, while the new "HMP5" format is used by
the A5 engine since version 5.230. The number of vertices in the rectangular mesh can be
determined by

int numverts_x = (int) fnumverts_x;
int numverts_y = numverts/numverts_x;

After the file header follow the textures and then the array of height values.

HMP texture format

The terrain surface textures are flat pictures. There can be more than one texture. By default, the first
texture is the terrain skin, and the second texture is the detail map if it has a different size. Further
textures are not used yet. You will find the first texture just after the model header, at offset
baseskin = 0x54. There are numskins textures to read. The texture and pixel formats are the
same as for MDL skins, and are described in detail in the MDL format description.

HMP height values

A terrain contains a set of animation frames, which each is a set of height values. Normally only the
first frame is used, because terrain does not animate. Each mesh vertex is defined by a height value
and a normal.

typedef byte unsigned char;
typedef word unsigned short;
typedef struct {
 word z; // height value, packed on 0..65536
 byte lightnormalindex; // index of the vertex normal
 byte unused; // not used
} hmp_trivertx_t;

3D Gamestudio Programmer's Manual © Conitec February 2003 23

To get the real Z coordinate from the packed coordinates, multiply it by the Z scaling factor, and add
the Z offset. Both the scaling factor and the offset can be found in the mdl_header struct. Thus the
formula for calculating the real height positions is:

float height = (scale[2] * z) + offset[2];

The X and Y position of the vertes results of the number of the vertex in the mesh, and thus must not
be stored. The lightnormalindex field is an index to the actual vertex normal vector, just like in the
MDL format description. A whole frame has the following structure:

typedef struct {
 long type; // always 2
 mdl_trivertx_t bboxmin,bboxmax; // bounding box of the frame – see mdl description
 char name[16]; // name of the frame, used for animation
 hmp_trivertx_t height[numverts]; // array of height values
} hmp_frame_t;

