Camera Tutorial

Or: How do I get those views to work?

By Gnometech

Chapter 1: Creating the map and preparing the session

Greetings!

My name is Gnometech and this is my camera tutorial. I won’t make any promises like „You will definitely be able to create your own camera views after working through this“, but chances are that things are a little clearer after reading and working through this one.

Start by creating a small map or take one of your sample maps. I am assuming you know how to do this and won’t tell you how to do it here. Place the player model somewhere in the map and assign it your favourite movement action, either the predefined player_move or one you yourself have written.

For the cameras to work it is essential that the entity synonym „player“ is known and defined and that it is... well, the player. movement.wdl assigns it, if you have written your own movement script, make sure you do, too.

Since you want to call your own camera code, be sure to change the line where you call the predefined „move_view“ to the new one, which we will call „update_views“. Again, if you don’t use predefines scripts, it doesn’t matter at all, where you call this routine, just make sure that it is called once every frame cycle.

Now create a new WDL file called „cam.wdl“ and include it in your main script. Ready to go!

Chapter 2: The 1st Person View

This one is actually quite simple. Put the following code lines into the WDL script:

view 1st_person

{

layer = 1;

pos_x = 0;

pos_y = 0;

}

function init_cameras()

{

camera.visible = off;

1st_person.size_x = screen_size.x;

1st_person.size_y = screen_size.y;

1st_person.genius = player;

1st_person.visible = on;

}

function update_views()

{

1st_person.x = player.x;

1st_person.y = player.y;

1st_person.z = player.z;

1st_person.pan = player.pan;

1st_person.roll = player.roll;

1st_person.tilt = player.tilt;

}
Now, include the call "init_cameras" somewhere in your main function, after the level load.

Save your script and run your level. If you have done everything correctly, the camera should follow the player’s movements.

What have we done here? Well, we have defined a new view. Imagine a view to be your connection to the game world. It is a "window", which leads there. You can define the position and size of the window on the screen by setting pos_x, pos_y, size_x and size_y. As you can see, the upper left corner of our view is equal to the upper left corner of the screen and the size is exactly the screen size.

The function update_views is updated every frame cycle and sets new values for the x, y and z coordinates of the camera (the view) in the world. Here, we just set them to the player's coordinates, thus making the camera always be "inside" the player.

The script isn't perfect, yet. For example, the camera is positioned at the center of the player's model and not at his head, causing the view to be a little too near to the floor. And we can't look up or down, yet.

The first thing is fixed fast. We just define a variable at the beginning of the new script:

var eye_height = 20;

And then, instead of

1st_person.z = player.z;

we write

1st_person.z = player.z + eye_height;

thus setting the camera higher by 20 quants. If the value doesn't fit your needs, adjust it, if needed even during gameplay.

Now, we want the player to be able to look up or down. For this purpose, we need other variables:

var tilt_1st = 0;

var cam_turnspeed = 2;

var max_tilt_1st = 40;
Now change the line reading:

1st_person.tilt = player.tilt;
to

1st_person.tilt = player.tilt + tilt_1st;
Then, add the functions:

function look_up()

{

if (tilt_1st < max_tilt_1st) { tilt_1st += cam_turnspeed; }

}

function look_down()

{

if (tilt_1st > -max_tilt_1st) { tilt_1st -= cam_turnspeed; }

}

to your script. These functions just have to be called during gameplay. For example, you could define:

on_pgup = look_up;

on_pgdn = look_down;

Save your work and run the level. Hmmm... not bad, but not the desired effect. If you press one of the keys and hold it, the view changes a little and won't move any further. You have to press it repeatedly for the view to change and that slowly.

How do we fix this? Change the on_pgup and on_pgdn definitions to:

on_pgup = handle_pageup;

on_pgdn = handle_pagedown;

Then define two more functions:

function handle_pageup()

{

while (key_pgup)

{

look_up();

wait(1);

}

}

function handle_pagedown()

{

while (key_pgdn)

{

look_down();

wait(1);

}

}

This way our functions are called each framecycle as long as the keys are pressed. If the turning of the camera appears to be to fast or to slow for you, adjust the cam_turnspeed value. Also, if you feel the field of view is too limited and that the player should be able to change his view angle more, set the max_tilt_1st value differently. A value of 90 means here: he is able to look directly up and directly down. A value above 90 even lets him perform a somersault... ;)

Enough for this chapter. The 1st Person view is working now, on for something different: a 3rd person camera.

Chapter 3: Freely rotatable 3rd Person View

Now we want to create a rotatable 3rd Person View. There are two possibilites how we can achieve this: the first would be to create camera that stays outside the player all the time and does NOT turn, even when he does, always facing him from one certain direction. The other would be a camera that turns when the player turns, thus always staying behind him (or in front of him, or to the side, or...)

I will make this camera freely turnable and zoomable. If you need just a top view for your game or a side view... no problem at all, just choose the correct values (you will see which) and don't include the functions to change them. ;-)

Let's start. I will do the first attempt, creating a 3rd Person View that faces the player always from the same direction and then tell you what need to be changed when you want the view to turn with the player.

Define a second view now:

view 3rd_person

{

layer = 1;

pos_x = 0;

pos_y = 0;

}

Add the following lines somewhere within the "init_cameras" function:

...

3rd_person.size_x = screen_size.x;

3rd_person.size_y = screen_size.y;

...

We won't make it visible, yet. Instead, we will be able to toggle both cameras during gameplay. Let us define the switching routine now:

var cam_mode = 0; // 0 meaning 1st Person, 1 meaning 3rd Person

function toggle_cams()

{

if (cam_mode == 0)

{ // Change to 3rd Person

1st_person.visible = off;

3rd_person.visible = on;

cam_mode = 1;

}

else

{ // Change to 1st Person

3rd_person.visible = off;

1st_person.visible = on;

cam_mode = 0;

}

}

on_f8 = toggle_cams;

By hitting F8 now, we are able to change between the views. However, that isn't of much use, yet, since the 3rd persons x, y and z aren't defined anywhere. We will do this now by changing the "update_views" function. (Remember, that is the one called each frame cycle.)

But first, we have to think... how can we define a 3rd person camera, that is freely rotatable around the player? It should (for now at least) stay in the same plane, so the z value will be the same. But how can we calculate the fitting x and y values? We need a little maths for that.

Imagine the player seen from above. Best thing would be to take a piece of paper and put a dot on it, somewhere, to indicate the player's position seen from above. Draw a circle around this dot. This should be the circle on which the camera can be moved around the player. This circle has a certain radius. If you set a certain point of the circle as "0" (for example the "top", but which one doesn't matter), you can describe every other point P on the circle just by the arc between the lines drawn from "0" to the centre and from P to the centre.

Thus, by defining the distance from the player (the circle's radius) and the angle in the plane, the camera's position is determined. I will give you the formula, you can easily get to it yourself with a little maths:

var dist_planar = 300; // distance from the player

var cam_angle = 0;

function update_views()

{

if (cam_mode == 0)

{

1st_person.x = player.x;

1st_person.y = player.y;

1st_person.z = player.z + eye_height;

1st_person.pan = player.pan;

1st_person.roll = player.roll;

1st_person.tilt = player.tilt + tilt_1st;

}

else

{

3rd_person.x = player.x - cos (cam_angle) * dist_planar;

3rd_person.y = player.y - sin (cam_angle) * dist_planar;

3rd_person.z = player.z;

3rd_person.pan = cam_angle;

3rd_person.roll = 0;

3rd_person.tilt = 0;

}

}
Save the script and run the level. Hit F8 to toggle the views. You should now view your player from outside. If you move through your map, the camera should always keep the same distance to the player and won't even change position, when the player turns.

If you change the values of dist_planar during gameplay (via TAB for example or if you define a function to change them by hitting a key... you should be able to create such a function yourself now), the camera zooms in or out. If you change the cam_angle, it turns around the player, always facing him. (3rd_person.pan = cam_angle makes sure of that)

There is however a problem with walls. The camera will go straight through walls and more often than not, you will have obstacles blocking the line of sight to the player. We will engage this problem in the next chapter, first we will change the camera code a little... we now want to be able to move the camera upwards, while always facing the player. It should also keep the same distance, thus moving not on a circle around him, but on a sphere.

How can we achieve this? Well, imagine your player now being seen from the side. If the camera is above the XY-plane of the player and you draw a line from it to the player, you get an angle between the XY plane and the line. This angle defines the position of the camera exaclty.

Of course, if you want to keep the total distance the same, the distance regarding the XY plane changes! A picture to show this:

[image: image1.png]
Now for the code adjustments:

var dist_total = 300; // Change THIS value to zoom in or out

var tilt_3rd = 0;

function update_views()

{

...

else

{

dist_planar = cos (tilt_3rd) * dist_total;

3rd_person.x = player.x - cos (cam_angle) * dist_planar;

3rd_person.y = player.y - sin (cam_angle) * dist_planar;

3rd_person.z = player.z + sin (tilt_3rd) * dist_total;

3rd_person.pan = cam_angle;

3rd_person.roll = 0;

3rd_person.tilt = - tilt_3rd;

}

By changing the tilt_3rd, cam_angle and dist_total values we can now move the camera freely around the player. It moves on a sphere where the radius can be changed by changing dist_total.

It is up to you to write functions for changing these values during gameplay and assign keys to it. Also, you will have to keep them limited, in order to prevent the player to zoom in or out to much or to tilt the camera too much.

In the next chapter, we will deal with the wall problem.

Chapter 4: How to keep the camera from going through walls

One thing first: there are several solutions for this and I don't claim mine to be the best. However, it worked fine for me so far, so give it a look. It isn't hard to understand, either.

The idea is to send a trace from the player to the new calculated camera position and see, if an obstacle is being hit on the way. If so, the distance between the player and the camera is altered... by the amount of space between the player and the obastacle, thus allowing a "smooth" handling of the cam. No jerky movement. :)

Let's see how it is done. After your calculations regarding the 3rd_person values (see last chapter), include the following line:

function update_views()

{

...

3rd_person.roll = 0;

3rd_person.tilt = - tilt_3rd;

validate_view();

}

...

}

This function will be defined now:

var dist_traced;

function validate_view()

{

my = player;

trace_mode = ignore_me + ignore_passable;

dist_traced = trace (player.x, 3rd_person.x);

if (dist_traced == 0) { return; } // No obstacles hit... fine

if (dist_traced < dist_total)

{

dist_traced -= 5; // Move it out of the wall

dist_planar = cos (tilt_3rd) * dist_traced;

3rd_person.x = player.x - cos (cam_angle) * dist_planar;

3rd_person.y = player.y - sin (cam_angle) * dist_planar;

3rd_person.z = player.z + sin (tilt_3rd) * dist_traced;

}

}

The function to determine the camera's position is exaclty the same, it just uses a new distance from the player... dist_traced, the one obtained by trace. It is modified a little, to prevent the camera from being directly inside the wall.

Now the camera should avoid walls and other obstacles in 3rd person mode smoothly.

One thing is left to do, before I leave you alone... letting the camera stay behind the player all the time. It is very simple to add this, just modify the lines:

3rd_person.x = player.x - cos (cam_angle) * dist_planar;

3rd_person.y = player.y - sin (cam_angle) * dist_planar;

to

3rd_person.x = player.x - cos (cam_angle + player.pan) * dist_planar;

3rd_person.y = player.y - sin (cam_angle + player.pan) * dist_planar;

So, all you have to do is add the player's pan to cam_angle in the calculation. Be sure to do the same in the validate_view or you will get strange errors!

If the camera isn't behind the player now at gamestart, but faces him, let's say, adjust the cam_angle, until it suits your needs... and then just don't let the player change this value anymore. Then the camera will stay behind the player all the time.

What else is there to say? I hope you enjoyed this tutorial and learned a little. It should be no problem now for you to create a new view, place it in the level, letting it follow the player, face the player, etc.

With a little thinking, you will be able to create stationary cameras, custom controllable cameras, top views, side views, turning views...

If you have anymore questions regarding this tutorial, ask in the 3DGS Forum or eMail me at:

gnometech@gmx.de
Enjoy.

Gnometech
