Partical basics continued
Lets look at the basic structure of crating a partical effect. You will have 2 primary parts, an effect instruction and a function.

Function partical_parameters()

{

}

effect(function,number,vec_loc,vel_vec)

lets look at the effect instruction first. Its very similar to like using an ent_create instruction as you are creating a partical entity(s) at a vector_location and assigning it an instruction set (a function in this case).

Parameters are:

Function

an ‘action’ like function that sets various parameters and behaviors

Number
the number of particals to generate this frame (each will be assigned its own instance of the function)

Vec_loc

the X/Y/Z location to create these particals at.

Vel_vec
a velocity vector for movement of the partical. This is like a direction vector it states how far to move this partical in X quants Y quants and Z quants each frame but its based on the level X/Y/Z, not relative to the entity like ent_move is

Within the function we have several parameters we can effect the partical with: (all being my. parameters)

.Lifespan

number of frames this partical lives

.Vel_x/Vel_y/Vel_z
velocity vector of the partical, if a vel_vector is passed in the effect instruction, these automaticly assume the values of that passed vector

.Gravity

the ammount of –Z gravity effect on the particals vel_vector

.Size

scale size of the partical, this effects either a pixel partical or a sprite partical

.Bmap

the image file to use if using a sprite partical

.Move
flag parameter to indicate this partical is to move based on its vel_vector values and gravity

.Function
this is a function called BY the partical to set up behaviour(s) of the partical. NOTE: NEVER put a loop (while) inside the parameters function, ONLY place a loop if needed inside this called function. You can use this called function to actualy create OTHER partical effects as well (child particals)

.Beam

commercial or pro only flag to streatch the partical the length of its vel_vector

.Streak

commercial and pro flag only to ‘smear’ the partical the length of its vel_vector

.Skills

7 skills as mentioned before

.Red

set a RGB red color to this partical

.Green

set a RGB green color to this partical

.Blue

set a RGB blue color to this partical

.Alpha

set the amount of alpha transparancy to this partical

.Transparent

transparancy flag

.Overlay

overlay flag

.Flare

flare flag

.Bright

bright flag

As noted.. Never place a loop inside this parameters fucntion. A loop to handle a particals behavior should

be handled in the parameters .function called function.

Lets make a simple partical so see how the basics work then we will add to it so we can see how some of these parameters work.

First I need a vector X/Y/Z to make the partical at, for this ill just look at my level in WED and get an XYZ location that will be visible to my player view.

function run_weapons()

{

//… other lines here

wait(1);

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

and I need a basic parameter function which I place BEFORE this function in my script of course (define before called)

function laser_part()

{

my.lifespan = 1; // partical will live 1 frame

my.size = 4; // partical will be 4 pixels square in size since this is not using an image

my.function = null; // must set function to null if no function is to be called
}

note: I have to set my.function=null if I’m not using a behaviour function.

Then I create a simple effect insctuction

wait(1);

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

effect(laser_part,1,temp.x,nullvector);

my effect creates 1 partical a frame at temp.x location and each partical is assigned its own instance(copy) of the laser_part function.

[image: image1.png]
pretty boring as it just looks like I got a speck of something floating in the air (so lets make it move. We can do it 2 ways, give it a velocity vector in the effect instruction or set a velocity vector in the parameters function. I’ll show you both here.

Lets give it a velocity of 0,-4,0 meaning 0 X, -4 quants Y, 0 Z

By the effect instruction we can set it this way:

function laser_part()

{

my.lifespan = 4; // set a longer lifespan so it can be seen better

my.size = 4;

my.move = ON; //set the partical move to ON so the partical will move

my.function = null;

}

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

vec_set(temp2.x,vector(0,-4,0)); // set a velocity vector

effect(laser_part,1,temp.x,temp2); // pass that vel_vector into the instruction

OR I can set it by the paramters function directly. Either way is the same.

function laser_part()

{

my.lifespan = 4; // set a longer lifespan so it can be seen better

my.size = 4;

my.vel_y = -4; // sets the Y velocity to –4 quants a frame. X and Z are 0 by defualt

my.move = ON; //set the partical move to ON so the partical will move

my.function = null;

}

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

effect(laser_part,1,temp.x,nullvector);
[image: image2.png]
Just keep in mind the velocity vector is based on the LEVELs X/Y/Z directions. Lets make it look better by giving it an image: (image here is bigger than actual size, I just blew it up so you can see it)

[image: image3.png]
I define this earlier in my script:

bmap laser_fire = <fpart.bmp>;

then add the image to my particals parameters

function laser_part()

{

my.lifespan = 4;

my.size = 8; // I increased the size a bit so its more visible

my.bmap = laser_fire; //assign the image to the partical parameters

my.overlay = on; // turn on overlay flag so the black in the image is not displayed

my.flare = on; // turn on flare so it smooths out the rough black edges around the image

my.bright = on; // turn on bright flag so its not so dull looking

my.move = ON;

my.function = null;

}

[image: image4.png]
now we are creating something that looks a bit like a laser beam, but it only looks like it. We actualy need to make a ‘beam’ of particals by laying down several particals side by side for a set distance. So we will modify our script a bit more and temporaraly remove the velocity vector.

I do not know what version of A6 engine your using, so I won’t cover beam and streak here, instead I’ll assume you’re an standard or extra version user and show you the method to make a beam.

function laser_part()

{

my.lifespan = 80;

my.size = 8;

my.bmap = laser_fire;

my.overlay = on;

my.flare = on;

my.bright = on;

my.move = ON;

my.function = null;

}

wait(1);

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

//vec_set(temp2.x,vector(0,-4,0));

while (temp.y < 960)

{

effect(laser_part,1,temp.x,nullvector);

temp.y -= 1;

}

sleep(3);

Notice fist I set the lifespan to 80 (this is the defualt lifespan length of a partical by the way) just so we can see the particals longer.

Now I set up a while loop dealing with my temp.y vector location. Since I’m starting my particals at Y = 1000. I create a partical there at that location, then I decerase the Y value by 1 quant. Repeat the decreas on the Y location untill it covers a distance of 40 quants (1000-40 – 960 thus the temp.y > 960). So in the end I will have 40 particals placed from –1000,1000,690 to –1000,960,690 at 1 quant distance apart.

NOTICE there is NO wait(1) in this while loop! This loop will FULLY execute before ANYTHING else executes in the game. NEVER, EVER make a while loop where the conditional (inside the ()) will always be true AND you do NOT have a wait() instruction inside the loop. This creates and INFINATE loop, it NEVER ends so can never exit this loop.

 I add in a sleep instruction so there is a pause between each time the loop runs. Just for temporary use only.

[image: image5.png]
Looks more like a laser beam (, now lets see it move. I just adjust my velocity vector for more speed then re-inseert it into the effect instruction.

wait(1);

while(player != NULL)

{

vec_set(temp.x,vector(-1000,1000,690));

vec_set(temp2.x,vector(0,-10,0));

while (temp.y > 960)

{

effect(laser_part,1,temp.x,temp2);

temp.y -= 1;

}

sleep(3);

[image: image6.png]
Shooting a laser beam 40 quants in length now once every 3 seconds (because of the sleep instruction) and they move 10 quants a frame (per the velocity vector) (
We now want to modify this so it works with our laser pistol. The pistol is already using a model for its ‘bullet’ to handle collision detection, so what we need is our laser partical effect to generate and move alogn with our laser ‘bullet’

First I make sure my laser_part function is palced BEFORE my bullet action in my script.

Then I ‘cut’ this chunk of code I just made out of my run_weapons function and paste it right before the while loop in my bullet_move action.

Cut this:

vec_set(temp.x,vector(-1000,1000,690));

vec_set(temp2.x,vector(0,-10,0));

while (temp.y > 960)

{

effect(laser_part,1,temp.x,temp2);

temp.y -= 1;

}

sleep(3);

paste to this:

action bullet_move

{

turn_towards_target();

my.enable_block = ON;

my.enable_entity = ON;

my.event = bullet_event;

my.flag1 = OFF;

my.flag2 = bullet_bounce[current_weapon];

my.skill100 = current_weapon;

vec_set(temp.x,vector(-1000,1000,690));

vec_set(temp2.x,vector(0,-10,0));

while (temp.y > 960)

{

effect(laser_part,1,temp.x,temp2);

temp.y -= 1;

}

sleep(3);

while (my.skill20 < bullet_ranges[my.skill100] && my.flag1 == OFF)

{

Now we modify (Since this effect only is to work with the laser pistol we do a check to see if my.skill100 = 3. We can also remove the sleep line now.

my.skill100 = current_weapon;

if (my.skill100 == 3)

{

vec_set(temp.x,vector(-1000,1000,690));

vec_set(temp2.x,vector(0,-10,0));

while (temp.y > 960)

{

effect(laser_part,1,temp.x,temp2);

temp.y -= 1;

}

}

while (my.skill20 < bullet_ranges[my.skill100] && my.flag1 == OFF)

We need the start point of the first partical which will be at the same X/Y/Z that this bullet entity is created at (my.x). We also know the lasers bullet speed is 20 quants a frame so we modify our velocity vector to 20,0,0.

my.skill100 = current_weapon;

if (my.skill100 == 3)

{

vec_set(temp.x,my.x);

vec_set(temp2.x,vector(20,0,0));

while (temp.y > 960)

{

effect(laser_part,1,temp.x,temp2);

temp.y -= 1;

}

}

while (my.skill20 < bullet_ranges[my.skill100] && my.flag1 == OFF)

2 things we should now note:

1 our while loop is no longer valid how it works we need to modify that so we can lay out a straight line of particals in the direction the bullet is to move

2 our velocity vector for our particals need to be rotated in the same direction the bullet is to travel.

my.skill100 = current_weapon;

if (my.skill100 == 3)

{

vec_set(my.skill40,my.x); // set the my.x location vector to skills 40,41,42

vec_set(temp.x,vector(1,0,0)); // vector length of 1 quant

vec_rotate(temp.x,my.pan); // temp is now a vector of length 1 quant in direction bullet goes

vec_set(temp2.x,vector(20,0,0)); // set temp2 as a vector length of 20 quants

vec_rotate(temp2.x,my.pan); // rotate it by bullets pan/tilt angles

my.skill50 = 1; // beam distance counter

while (my.skill50 < 40)

{

effect(laser_part,1,my.skill40,temp2);

my.skill50 += 1;

}

}

Nothing is realy new here, I just set some vectors and rotated 2 of them. This allows us to now set the start location (my.skill40,41,42) and a velocity vector (temp2) in the direction the bullet moves. We also have a vector that is length of 1 quant that is turned in the direction the bullet moves to increment placement of the particals (temp). Now we just have to ADD that 1 quant vector to our my.skill40 vector inside our loop to calculate the new placments of each particals start location.

my.skill50 = 1;

while (my.skill50 < 40)

{

effect(laser_part,1,my.skill40,temp2);

vec_add(my.skill40,temp.x);

my.skill50 += 1;

}

by addign this direction vector that’s a length of 1 quant and it points in the direction the bullet will go, it now will lay down the particals in that direction. You might say “Wait a second! These particals are layed out in a line from the bullet start location to 40 quants ahead of it. So as the particals move forward, the bullet will always be behind 40 quants from the furthest out partical.

Not so, realy. Right AFTER these particals get layed down, we hit our bullets ent_move, so the bullet will move 20 quants ahead, so it will be about in the MIDDLE of the beam as the beam moves forward then the bullet entity. Considering how our models are surrounded by a bounding box that’s usualy about 10 to 20 quants away from the actual surfaces of the models, the beam leading partical will hit aprox the same time the bullet model hits the target entitys collision hull. (
[image: image7.png]
Looks not too bad for a little bit of work.

We still have one problem to tackle yet with our laser beam. Our laser ‘bullet’ may hit something and is removed, but our beam still keeps going (because of its lifespan). So we need a way to remove the particals once the ‘bullet’ is removed from the game (it hits something or reachs its maximum range).

To do this we can store the bullets pointer into a partical skill as a handle, then run a check on that pointer and see if it is NULL (removed) then if so, then set the particals lifespan down so it will die.

First we add the bullets handle to a skill of each partical that is created.

function laser_part()

{

my.lifespan = 80;

my.skill_a = handle (YOU);

my.size = 8;

my.bmap = laser_fire;

my.overlay = on;

my.flare = on;

my.bright = on;

my.move = ON;

my.function = laser_alive;

}

Remember our rule on using global variables and pointers. USE it or LOSE it. The YOU pointer as we know can change values MULTIPLE times in a single frame, so how do we know the YOU pointer will belong to the right thing?

An entity that creates an entity (parent entity creates child entity), the YOU pointer is set to the parent entity realtive to the child entity. So RIGHT away we want to USE the YOU entity at the beginning of the child entities life (before ANY wait/sleep instructions). SO here I right away store the YOU pointer as a handle into the partical’s skill_a skill.

I also assign the partical’s my.function a function name that it will call (just like an ON_key = or my.event = instructions)

I then define that function BEFORE this function in my script.

 function laser_alive()

{

while (ptr_for_handle(my.skill_a) != NULL)

{

my.lifespan = 10;

wait(1);

}

wait(1);

my.lifespan = 0;

}

function laser_part()

{

…

As you can see in the while loop, I convert the handle stored in skill_a back to a pointer and then check to see if is NOT NULL (empty, or the bullet entity no longer exists) in value. If the bullet still exists (while then is true) I set the particals lifespan to 10 frames. So long as the bullet is alive in the level, the partical will be too.

Soon as the while condition fails (the bullet has been removed) the partical waits 1 frame then sets its lifespan to 0, which will kill the partical, removing it from the level.

[image: image8.png]
As you can see, my particals never went past my shooting range ledge infront of me when I shot at it.

You can do lots of tweaks to the particals, like the my.function can be used to call a function that creates child particals that are generated from the beam particals (this is how you can create a flame and smoke trail from a rocket). I highly recommend getting some partical tutorials, many well written ones exist already. For complex particals, bone up more on 3DGS trigonometry. Kinji and Evlyn Boo both cover it well in their tutorials.

Explosions.

OK, I promised making an explosion in this part of the tutorial, so we will cover the most basic and most widely recognized explosion in first person shooters…. The Exploding Barrel. Andrew Kostuik and Gabor Denes cover these realy well in their expolding barrel packs/tutorials. Recommend you get these.

First we need a barrel model we can place in your target range. I barrowed this one (fass6.mdl) from the guys at Terminal26 web site, they make some very nice models, textures and terrains.

[image: image9.png]
for my exploding barrel it needs a health counter so when it dies it is removed. We already have a basic action like that for our smily face targets, so I will just copy that and give the copied function a new name.

//uses: health

action pratice_target

{

my.ambient = 80;

my.health = int(random(50)+1); // health from 1-50

my.overlay = on;

my.flag8 = ON;

while(my.health >0)

{

wait(1);

}

ent_remove(me);

}

Copy and paste:

//uses: health

action exploding_barrel // rename the copy
{

my.ambient = 80;

my.health = int(random(50)+1); // health from 1-50

my.overlay = on;

my.flag8 = ON;

while(my.health >0)

{

wait(1);

}

ent_remove(me);

}
Now I need an explosion, for this I’ll use the explo+7 sprite that comes with 3DGS (you will find it in the templates folder. I copy this over to my FPS/images folder so I can keep everythign for my game in one place.

[image: image10.png]
The +7 of course means there are 7 frames to the animation of this sprite (go ahead and count them ().

What we do is when the while loop in our exploding_barrel action fails, it hits the remove(me), we need to place BEFORE the remove(me) an ent_create instruction, to create this sprite there.

Define my image up with the rest of my image definisions

string b_explosion = <explo+7.bmp>;

Then I add the ent_create. Format of the instruction is:

Ent_create(filenamestring,vec_location,action);

So in using ent_create we define a string for the file of the entity model or sprite.

Give it a vector X/Y/Z location to be created at.

And assign that entity an action name.

//uses: health

action exploding_barrel

{

my.ambient = 80;

my.health = int(random(50)+1); // health from 1-50

my.overlay = on;

my.flag8 = ON;

while(my.health >0)

{

wait(1);

}

ent_create(b_explosion,my.x,null);

ent_remove(me);

}

I gave it the same vec_location as the barrel and gave it NO action (for now) just to be sure our barrel is removed and the sprite is created correctly.

[image: image11.png]
After shooting the barrel a couple times, its removed but look where my sprite is, it’s half ways into the floor. I want it about centered on the center of the barrel. Any idea why it is off? If you guessed that the origin of the barrel is in the bottem of the model (at the floor) then you guessed right. So I just open the barrel in MED and recenter my barrels origin to the middle of the barrel.

[image: image12.png]
Resave lvl and run.

[image: image13.png]
Much better. Now we can create an action script for our sprite to animate it.

action explosion

{

my.overlay = on;

my.bright = on;

my.flare = on;

my.alpha = 90;

my.facing = on;

my.passable = on;

my.skill1 = 0;

while(my.skill1 <100)

{

ent_animate(me,"",my.skill1,ANM_CYCLE);

my.skill1 += 5*time;

wait(1);

}

}

and edit my ent_create line in my barrel action

ent_create(b_explosion,my.x,explosion);

The only thing new here is the my.facing = on . This is a sprite flag that sets the sprite to ALWAYS face the camera view. We also make it passable so the sprites won’t make a physical barrier.

[image: image14.png]
I’d also like a fireball like sprite effect to go with this one. I made this sprite (8 frames) using a simple paint program and Irfan to put it togeather.

[image: image15.png]
I set this one up just as I did the first, but I can use the SAME action for this sprite.

string b_explosion = <explo+7.bmp>;

string f_explosion = <explo+8.bmp>;

ent_create(b_explosion,my.x,explosion);

ent_create(f_explosion,my.x,explosion);

[image: image16.png]
now that it looks right, I place an ent_remove(me) in my sprites action script, so after it finishs animating it removes itself.

action explosion

{

my.overlay = on;

my.bright = on;

my.flare = on;

my.alpha = 95;

my.passable = on;

my.facing = on;

my.skill1 = 0;

while(my.skill1 <100)

{

ent_animate(me,"",my.skill1,ANM_CYCLE);

my.skill1 += 5*time;

wait(1);

}

ent_remove(me);

}

And what’s an explosion without a nice sound FX, I attach a sound to the barrel entities action, but I don’t use ent_playsound because as soon as the barrel is removed the sound stops. Instead I use just a snd_play. I define a new sound at the top of my script WDL with my other sound definitions.

sound explode = <explosin.wav>; // this wav file is in the templates folder

//uses: health

action exploding_barrel

{

my.ambient = 80;

my.health = int(random(50)+1); // health from 1-50

my.overlay = on;

my.flag8 = ON;

while(my.health >0)

{

wait(1);

}

ent_create(b_explosion,my.x,explosion);

ent_create(f_explosion,my.x,explosion);

snd_play(explode,100,0);

ent_remove(me);

}

Now we got a nice booming exploding barrel, but something is missing. The damage. The explosion should inflict damage on anything within a set radius around it. This explosion damage should not only harm the player, but our later enemy entities and even other barrels (to create that explosion domino effect like you see in FPSs). Lets start with a 200quant radius damage area. How can we check if anything is inside that 200 quant radius? A scan sounds like it would work, but scan only returns the closest entity encountered. Instead we are going to work scan backwards, in otherwords anything that is hit by the scan of the barrel will take damage. So our all our entities need to be set to be sensitive to a scan.

For this we use the event_scan/enable_scan event flag to make ANY entity that we what to beable to be damaged by an exploding barrel. Lets start with the barrels themselves to see how we do it.

//uses: health

action exploding_barrel

{

my.enable_scan = on; // entity is sensitive to a scan

my.event = trigger_scan;

now we build our trigger-scan function (place it BEFORE our barrel action)

function trigger_scan()

{

if (event_type == event_scan && YOU !=player)

{

my.health -= 50;

}

}

Notice we check to make sure the YOU entity (the entity that did the scan) is not the player, because the only other entity (so far) that does a scan is the player (for opening doors).

Then we need an actual scan instruction in the barrel action right before we create the 2 sprites.

while(my.health >0)

{

wait(1);

}

sleep(1);

temp.pan = 360;

temp.tilt = 360;

temp.z = 200;

scan_entity (my.x, temp);

ent_create(b_explosion,my.x,explosion);

ent_create(f_explosion,my.x,explosion);

snd_play(explode,100,0);

ent_remove(me);

}

I add a few more barrels in my level for testing, keeping them all roughly in range of each other.

Note the sleep(1) I added, this will put a nice little delay between each barrel exploding

[image: image17.png]
[image: image18.png]
[image: image19.png]
We could do allot more with our barrel, like scale the damage down based on the distance the entity is from the barrel itself. Since scan stores the distance from the scanned entity to the scanning entity in the predefined variable RESULT, we could use that to scale the damage.

my.health -= 50 * (RESULT/200);

We could add partical effects, and ‘gibs’ (no, not the Gibb brothers that made the group the BeeGees). Gibs are 3d models that simulate pieces or chunks of something, we could toss out away from the barrel during the explosion (just another ent_create like our sprites, with an action to set its movement, mabey even partical trailing it for fire and smoke off the gibs). See the afor mentioned tutorials on more of things like this. We could also apply some movement to any entity in range to be ‘blown’ away from the explosion based on the direction vector from the barrel to the respective entity(s). Could also add burn/scorch mark sprits on any surface near the exploding barrel just like how we added bullet sprites for when bullets bounce. Even an animated barrel that ‘peals’ itself apart before being removed.

For now we need to adjust our practice_target and player_move actions to accept damage from these barrels too.

//uses: health

action pratice_target

{

my.enable_scan = on;

my.event = trigger_scan;

These in player.wdl

function player_events()

{

if (event_type == event_scan && YOU !=player)

{

my.health -= 50 * (RESULT/200);

}

}

action player_move

{

player = me;

wait(2);

my.falling = 0;

my.jumping = 0;

my.jump_hight = 0;

my.idle_percent = 0;

my.walk_percent = 0;

my.run_percent = 0;

my.land_percent = 60;

my.jump_percent = 0;

my.temptilt = 0;

camera.genius = player;

shift_sense = int(my.run_anm_speed);

my.enable_scan = ON;

my.event = player_events;

run_weapons();

while (my.health > 0)

Now if we ran our player into the target area and shot a barrel that was CLOSE to the player, the player would get hurt too. I add some more barrels for fun (
[image: image20.png]
[image: image21.png]
Note the health loss on the player info bar.

Play around with the damage output of the barrels, I rather like the scaling of the damage based on range so I will keep that in our game.

Keys.

Lets see how we can incorperate a basic key pick-up, and locked doors.

Easiest way would be store keys in a glocal array (like we did with tracking our weapon pick-ups), but we decided before to use a skill. Well, I decided that (because I wanted to show you how you could use ONE variable to handle multiple flags.

Our skill would look like this as a variable:

000000.000

We can use all the intiger digits (before the decimal) for individual flags. The decimal values are unstable for flag use because of the .001 error factor.

So we can use 6 keys numbered: 654321. Or compaired to our skill

654321

000000.000

If I picked up say key number 3, I would set the 3rd intiger slot to a value of 1

654321

000100.000

The trick is to set and read each intiger. We can do that easy be exponent mathmatics (also known as scientific notation).

NOTE: this symbol ‘^’ means ‘ to the power of ‘. The number following it is refered to as the exponent.

10^3 would be 10 to the power of 3 or 10*10*10

10^0 = 1

10^1 = 10

10^2 = 100

10^3 = 1000

10^4 = 10000

10^5 = 100000

So, if you notice, the exponent in dealing with decimal 10 deterimins how many trailing 0s are after the 1

To set a particular key flag then I could do something like this

Var Key = 3;

My.keys += 10^(key-1);

We will use a c-script instuction here for computing power since its faster then using ^. That instruction is called : pow(x,y). raises X by the power of Y

Pow(10,2) = 100

My.keys += pow(10,(key-1));

This would give me a skill value looks like this:

000100.000

Lets work this in to set up our key pick-up. I add a model in for my Key, which for this example I will set it to key number 3, so I set the Units to 3 and pickup_type to 7 (for a key)

[image: image22.png]
I then edit my pick_ups event for pickup_type 7

if (my.pickup_type == 7) // key pickup

{

you.keys += pow(10,(my.units-1));

my.flag1 = off;

}

I can be fairly safe setting the flag like this for each key because I’m the one adding them to the levels and I don’t intend to add more than one of each key (
Now we will edit the door actions so our door in this level is locked, and only will open if the player has key 3. First, 2 new defines for our door.wdl script

DEFINE Locked,flag2;
// door is locked or not TRUE/FALSE

DEFINE Keyto_open,skill7; // which key number is used to open this door
Be sure to add these to the //uses lines for both door actions

Then I edit my door on this level to set the key number to 3 and that the door is flagged locked

[image: image23.png]
Almost there (Now we just have to edit the door event handling to see if its locked, check for the right key, if have the right key, flag it unlocked. Which is handled by our scan_event function in events.wdl

Make sure the defines are set up right first for Locked, Keyto_open and Keys here as well for this function.

//uses: moving, locked, keyto_open, keys

function scan_event

{

if (my.locked == ON)

{

}

if (EVENT_TYPE == event_scan && my.locked == OFF)

{

my.moving = 1;

}

}

Now, the real trick (inside our IF statement here we need a handling way to read the player.keys value, read the correct intiger and see if it has been set to a value of 1 so we can reflag this door as open. If not flagged, then we jump out of this functions execution.

Unfortunatly, 3DGS c-script doesn’t give us a convenent way to read an individual number out of a variable. C-Script does however have that ability with strings and that we can take advantage of. First we need to convert the intiger part of the skill to a string. Then we want to check to make sure that the length of the string (number of characters in the string) is equal to or greater than the digit place for the flag.

i.e. if our key number is 3, then we want to be sure the length of the string is at least 3 characters long.

Example If I picked up key #2 my.skill would equal 10.000 or intiger length 10. If a door I went up to needed Key #3 (which is 100.000 variable value) and I hadn’t picked up key #3 (third digit hasn’t been set) by just checking the length of the number converted to a string I’d see right away I hadn’t picked up key 3 or greater.

So lets look at this part in script.

I define a string,

String temp_keys[6];

I set this strings length to a maximum of 6 characters long ([6]) because our skill only has 6 intiger digits

convert the intiger part of the skill to a string and store it in that string

str_for_num(temp_keys, int(player.keys));

str_for_num converts a number to a string and stores it in defined string of the first parameter, so here I get the intiger part of the player.keys skill value

now we want to get the length of that string, compare it to the doors keyto_open number to see if the length of the string is > or = to keyto_open. If it isn’t we cancel this functions operation.

If (str_len(temp_keys) >= my.keyto_open)

{

}

else

{

return;

}

the instruction str_len will return the value of the length or number of characters of a string.

I plug this what I got so far into my even_scan script

string temp_keys[6]; // place this with my other defines at the top of my events.wdl

 function scan_event

{

if (my.locked == ON)

{

str_for_num(temp_keys,int(player.keys));

If (str_len(temp_keys) >= my.keyto_open)

{

}

else

{

return;

}

}

if (EVENT_TYPE == event_scan && my.locked == OFF)

{

 my.moving = 1;

}

}

If we tested this right now, even picking up our keycard, the door won’t budge. But, we are close to making it work. The ‘return’ instruction in our else { } means if our IF condition failed, then our script terminates this function and returns to the next line of instruction after THIS particular function was called. This is part of what is known as ‘parsing’ or ‘parsor’. The order and direction instructions are executed (more on this subject a bit later).

If our IF passes its conditional, then we need to read the individual character that is equal to the digit slot our keyto_change. I.e. for key 3 we need to read the 3rd character of the string. The order we read them is from right to left:

Keys 654321

Var 000000.000

String 000000

So counting left from the Ones digit : one’s, ten’s, hundred’s. our key 3 is in the hundred’s possition or for the string, the 3rd character in from the right. To get at this character we use another terminology to programming: trunicate (pronounced : true – na – kate , think of ‘tunacake’ (. Also pronounced as trun- kate) like the word tourniquet (to cut off) , which allows us to ‘chop-off’ so much of the end of a string of characters. We want to leave the digit we want, but discard anything to the right of it.

Example: we have 000100, I trunicate it to remove the last two 0’s to end up like this: 0001

c-script has a command just for this: str_trunc(string, number)

string being of course the string to truncate, number the number of characters to remove. So first we check if our keyto_change is greater than 1, if so then we want to trunicate anything my.keyto_open-1

if (my.locked == ON)

{

str_for_num(temp_keys,int(player.keys));

If (str_len(temp_keys) >= my.keyto_open)

{

if (my.keyto_open > 1)

{

str_trunc(temp_keys,my.keyto_open-1);

}

}

else

We now have the right side of the digit we want moved to the ONE’s possition (very right character in our string). Now we want to ‘clip’ any remaining characters off the front half of the string.

i.e. if we had 100100 we trunicated it to 1001. Now we want to clip the leading 100 off it so our string just remains with one character. We use another c-script instrucion for this: str_clip(string,number)

just like trunication but we are removing ‘number’ of characters from the left/front half of the ‘string’

str_clip(temp_keys,(str_len(temp_keys)-1));

here I get the remaining length of the string (str_len) reduce that result by 1 (-1). Then that number is used to set how many characters to remove from the front of our string.

if (my.locked == ON)

{

str_for_num(temp_keys,int(player.keys));

If (str_len(temp_keys) >= my.keyto_open)

{

if (my.keyto_open > 1)

{

str_trunc(temp_keys,my.keyto_open-1);

}

str_clip(temp_keys,(str_len(temp_keys)-1));

}

else

Now we just need to read our string temp_keys and see if it is 1 or 0. REMEMBER though we are still working with a STRING, not a numaric variable. We can’t compare strings like we do with numbers (== >= <= !=), they don’t work. Instead we use have to comapair strings. C-Script has 3 isntructions for compairing strings. Be sure you using the correct one you want.

Str_cmp(string1,string2)
Case sensitive string compair

Str_cmpi(string1,string2)
Not case sesitive string compair

Str_cmpni(string1,string2)
part of string 1 compairs to string 2, not case sensitive

In this case we want str_cmpi which will return a result of 0 if they are not equal and returns a 1 if the 2 strings are equal.

Example:

String s1 = “hello”;

String s2 = “goodbye”;

Str_cmpi (s1,”hello”); would return a 1 as both strings are the same

Str_cmpi(s1,s2); would return a 0 since these strings are not the same

So in our script we can do this

If (str_cmpi(temp_keys,”1”))
{

}

// if we compair the strings temp_keys and “1”. If they are equal they give a value of 1/True. If not then they are 0/false

being true, we can say the key has been then picked up. We can unlock this door. If not, then we don’t have the key, terminate this function (return)

If (str_cmpi(temp_keys,”1”))
{

my.locked = OFF;

}

else

{

return;

}

Now. I want to be SURE this works EXACTLY as I planned it (to do that I make copies of my keycard in my level and set key numbers for each key 1-6. I make sure key 3 is off to one side away from the rest.

[image: image24.jpg]
Then I’m going to add in a little “temporary” scripting to watch my key pickups AND what the door is doing with my temp_keys string.

I add a second string define in my events.wdl:

var changeto_level= 0;

var temp_loc[3];

var temp_ang[3];

string temp_keys[6];

string temp_keys2[6]; // temp only remove after testing
I add a text object to display these 2 strings on my screen:

text display_keys // temp only remove after testing
{

pos_x = 10;

pos_y = 10;

strings = 2;

string = temp_keys2,temp_keys;

flags = visible;

}

Then I add a simple loop in my ‘main’ function to keep these updated.

function main()

{

max_entities = 3000;

freeze_mode = 1;

level_load ("TLlevel3.wmb");

wait(2);

freeze_mode = 0;

media_loop("haily.mp3",null,100);

on_space = operate;

on_h = toggle_hud;

on_s = toggle_scope;

on_0 = select_weapon;

on_1 = select_weapon;

on_2 = select_weapon;

on_3 = select_weapon;

wait(1); // temp only remove after testing

while(1)

{

str_for_num(temp_keys2,int(player.keys));

wait(1);

}

}

OK I run this and I see a 0 in my upper left corner.

[image: image25.jpg]
[image: image26.jpg]
I pick up a couple keys and I see which ones they are by which digits are set 1 or 0: here I got keys 2 and 4 as my 2nd and 4th digits are set to 1’s
[image: image27.jpg]
Here you can see I got all but Key # 3 picked up now. My digits are 111011. Key 3 is still on the floor.

[image: image28.jpg]
Now I go up to my door which is opened with key#3. I press the space bar (to open door/scan event) and a 0 pops up under my 111011. That’s my temp_keys string value. It’s 0 because key 3 hasn’t been picked up yet, so the 3rd digit is still 0.

[image: image29.jpg]
Now I go pick up key #3 and try opening the door again. This time the door opens and I see my temp_keys value changed from 0 to 1. The value in the 3rd digit (
After all that, you might say “ wouldn’t it just be easier to store my key pick-ups in an array and not have to do all this converting to string stuff?. Yes it would(and you could have ALLOT more than 6 keys plus it would be easier to read by just using the keyto_open as the index for the array. But that wasn’t the point here, it was how you could use one skill for 6 flags AND some basics of string manipulating to boot. It’s all about learning (
You can test this further by duplicating the door and seting them each to different keyto_open and test each key and door.

