
Path-Finding using Breadth First Search Algorithm

ROGÉRIO DE LEON PEREIRA
1

1FourX Development Ltda (4x)

joshua@fourx.com.br

1 Introduction

A big problem for Acknex users is how to create
a simple and efficient path system. In this
tutorial you will learn how transform a simple
set of paths (using the version A6.22 new
path/waypoint design) in a graph and solve it
using the Breadth First Search algorithm (BFS)
with some little modifications.

2 Graph Theory

The graph theory began with the work of Swiss
mathematician, Leonhard Euler (1707- 1783), in
a problem about crossing every the Könisberg
Bridge network across a river with an Island in
between. How to traverse all bridges without
crossing one bridge twice? (Figure 1)

Figure 1 – Könisberg Bridge Network

Euler solves this problem creating a graph where
earth was node and bridge was edge (Figure 2).

Figure 2 – Graph by Euler

Informally, a graph is a finite set of dots called
nodes (or vertices) connected by links called
edges (or arcs). More formally: a simple graph is
a (usually finite) set of nodes V and set of
unordered pairs of distinct elements of V called
edges. Two nodes are adjacent if they are
connected by an edge

Not all graphs are simple. Sometimes a pair of
nodes is connected by multiple edges yielding a
multigraph. At times nodes are even connected
to themselves by an edge called a loop, yielding
a pseudograph. Finally, edges can also be given
a direction yielding a digraph (or directed
graph).

A graph is connected if there is a path
connecting every pair of vertices (Figure 3a). A
graph that is not connected can be divided into
connected components (Figure 3b).

a

b

c

d

Figure 3a

Connected

a

b

c

d

Figure 3b

Not Connected

a

b

d

c

Rogério de Leon Pereira – FourX Development Ltda – joshua@fourx.com.br – Brazil RULES

 3 Breadth First Search – BFS

One trivial technique to look for a way between
two nodes in a connected graph is the Breadth
First Search algorithm.

This technique consists in choose any starting
node, search all adjacent nodes not visited and
put it in an array (FIFO – First In First Out),
and repeat this procedure while the array is not
empty.

Each visited node receives as label the value
from the label of the previous node increased of
1. With this, after cover all the graph it’s be
possible to found the way between the initially
chosen node and any another node of the graph.

1 set all nodes like not marked
2 label al nodes with infinity value
3 label node v with1 and put on the FIFO
4 while FIFO array is not empty
5 make v the first node in FIFO
6 for each node w adjacent from v do
7 if w not marked
8 mark w
9 w label = v label + 1
10 put w on the end of FIFO
11 remove v of FIFO

Here it is an example to demonstrate graphically
and step-by-step how the algorithm would work
in given graph. Each node will be represented
by a letter and its respective label for a number.

The nodes and the not visited edges will be
painted of red and the visited nodes and edges
will be painted of blue. Together to each
representative figure it will also have the content
of the array (FIFO) of vertices (F).

All the nodes labels will start with infinite value
(∞).

The node a is placed in the array and its label
modified for 1.

After that, the edges are covered in search of the
not visited adjacent nodes.

The process is repeated while the array will not
be empty.

a ∞

b ∞

c ∞

e ∞

f ∞

g ∞

h ∞

F = ∅

d ∞

Step 1

a 1

b ∞

c ∞

e ∞

f ∞

g ∞

h ∞

F = a

d ∞

Step 2

a 1

b 2

c 2

e ∞

f ∞

g ∞

h ∞

F = b | c

d ∞

Step 3

a 1

b 2

c 2

e ∞

f ∞

g ∞

h ∞

F = d

d 3

Step 4

a 1

b 2

c 2

e 4

f ∞

g ∞

h ∞

F = e

d 3

Step 5

PATH-FINDING USING BREADTH FIRST SEARCH ALGORITHM

Conitec Tutorial Contest 2004

3

The algorithm ends when not exist more nodes
in array F. To find the way between the initial
node and any another node of the graph, just
choose the destination node, select a node
adjacent of lesser label, place it in an array and
repeat the process until the node in the array is
the origin node.

For illustration effect, the origin node will be
colored of yellow, and the destination node of
green. Reds will be all the nodes and edges that
will be between the destination and the origin.
The node a it was used as origin of the search,
and node h as destination.

The way of node a for node h is: a, c, d, e, f, h.

4 Graphs on Acknex 3D Engine

It is possible to create a graph in the A6 similar
to the graph used in the example of item 3. In a
new map or a map used for tests, select the
menu Object / Add Path (figure 4).

a 1

b 2

c 2

e 4

f 5

g 5

h ∞

F = f | g

d 3

Step 6

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = ∅

d 3

Step 7

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = h

d 3

Step 1

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = f

d 3

Step 2

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = e

d 3

Step 3

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = d

d 3

Step 4

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = c

d 3

Step 5

a 1

b 2

c 2

e 4

f 5

g 5

h 6

F = a

d 3

Step 6

Rogério de Leon Pereira – FourX Development Ltda – joshua@fourx.com.br – Brazil RULES

Figure 4 – Adding a Path

The WED represents the Path object as a square
with a central circle (the gxl2dx8a.dll is required
for path editing). After selecting a path, enter the
Vertex Move Mode (Figure 5) for editing nodes
and edges. The direction of every edge is
indicated by a little arrow (Figure 6a).

Figure 5 – Using the Vertex Move Mode

Select a node by clicking on it. The node is
highlighted in red. You can drag it around with
the mouse. Clicking at another place in the
window creates a new node and draws an edge
from the last node to the new one.

For connecting two nodes with an edge, either
click on the first node, drag the rubber band
with pressed [Ctrl] and left mouse key to the
second node, and drop it there.

Or click with [Ctrl] pressed on a node to draw
an edge from the previously selected node to
this one. Each node can have an arbitrary
number of edges to other nodes.

Touching an edge with the mouse highlights that
edge (Figure 6b), right clicking on it opens an
edge properties panel for setting the edge
direction, bezier factor (not used yet), weight,
and skill. (Figure 7).

Figura 6a

Edge between 2 nodes

 Figura 6b

Touching an edge

You can notice on the edge properties panel
(Figure 7) a button called direction where you
can define the edge direction. In this case the
direction of the edge is from the node 2 to node
1, a = (2,1).

PATH-FINDING USING BREADTH FIRST SEARCH ALGORITHM

Conitec Tutorial Contest 2004

5

Figure 7 – edge properties panel

Click once on the direction button, the edge
direction will change to node 1 for the node 2, a
= (2,1) (Figure 8).

Figure 8 – Changing the edge’s direction

Click one more time on the direction button to
change the edge for no direction (Figure 9),
exactly what will be necessary for the example.

Figure 9 – Edge without direction

Now, let’s add some more nodes, binding them
with the edges. Don’t forget to change all edges

to no direction (Figure 9). The result will be
close on the Figure 10.

Figure 10 – Graph on the A6 map

Select any node and right clicking on it opens a
node properties panel for setting the 6 node
skills. They can be used in C-Script for
triggering path events. (Figure 11).

Figure 11 – Node properties panel

Rogério de Leon Pereira – FourX Development Ltda – joshua@fourx.com.br – Brazil RULES

5 Implementation

For the given example, it is considered that each
node of the graph can have a label. The nodes
that will have label 1 are destined as escape
way, of label 2 is for patrol way and of label 0
they are common nodes. The values of label of
each node will be kept in its skill1 property.

Let’s create some variables and arrays to be
used in the breadth search algorithm. The
general graph information will be stored on the
path entity.

var Nodo = 1; //current node

var Nodo_S[6]; //to sotore node skills

var Nodo_A[100]; //array for target nodes

var Nodo_AI = 0; //índice for target nodes

var Nodo_AC = 0; //counter for target nodes

var Nodo_N = 0; //number of nodes

var Nodo_C = 0; //counter for general use

var Nodo_T[100]; //array for node labels

var Nodo_TI = 0; //índice for node labels

var Nodo_O[100]; //path order

var Nodo_OI = 0; //índice for path order

var Fila[100]; //FIFO array

var Fila_I = 0; //índice for FIFO

var Fila_C = 0; //counter for FIFO

var Aresta = 0; //number of edges

The breadth search algorithm is divided in two
parts: the function busca and the function
busca_largura(v). All steps are described above
on the item 3

function busca(w){

 busca_limpa();

 Fila[Fila_I] = w;

 Nodo_T[w] = 1;

 While (Fila[Fila_I] != 0) {

 busca_largura(Fila[Fila_I]);

 Fila_I += 1;

 }

 busca_ordena();

}

function busca_largura(v){

 Aresta = 1;

 while (Aresta != 0){

 Nodo = path_nextnode(my,v,Aresta);

 if (Nodo == 0) {

 Aresta = 0;

 }

 else {

 if (Nodo_T[Nodo] > Nodo_T[v]) {

 Nodo_T[Nodo] = Nodo_T[v] + 1;

 Fila_C += 1;

 Fila[Fila_C] = Nodo;

 }

 Aresta += 1;

 }

 }

}

Additionally, we will use more 3 functions:
busca_limpa(), busca_alvo(tipo) and
busca_ordena(). The first one is used to empty
all the variables and arrays used in the process;
the second function search the path entity and
verifies which nodes is of a specific type, type
this chosen through the parameter of the
function. The last one serves to feed an array
with the order of the nodes that will be covered.

function busca_ordena(){

 Nodo_AI = Int(random(Nodo_AC));

 Nodo_OI = Nodo_T[Nodo_A[Nodo_AI]];

 Nodo_O[Nodo_OI] = Nodo_A[Nodo_AI];

 while (Nodo_OI > 1) {

 Aresta = 1;

 Nodo = 1;

 While (Nodo != 0) {

 Nodo = path_nextnode(

 my,Nodo_O[Nodo_OI],Aresta);

 if (Nodo != 0

 && (Nodo_T[Nodo] < Nodo_OI)) {

 Nodo_OI -= 1;

 Nodo_O[Nodo_OI] = Nodo;

 Nodo = 0;

 }

 Aresta +=1;

 }

 }

 Nodo_OI = 1;

 Nodo = Nodo_O[Nodo_OI];

}

PATH-FINDING USING BREADTH FIRST SEARCH ALGORITHM

Conitec Tutorial Contest 2004

7

function busca_alvo(tipo){

 Nodo_C = 0;

 Nodo_AI = 0;

 while (Nodo_C < 100) {

 Nodo_A[Nodo_C] = 0;

 Nodo_C += 1;

 }

 Nodo_C = 1;

 while (Nodo_C <= Nodo_N) {

 path_nodepos(my,Nodo_C,temp);

 path_nodeskills(my,Nodo_C,Nodo_S);

 if Nodo_S[0] == tipo {

 Nodo_A[Nodo_AI] = Nodo_C;

 Nodo_AI +=1;

 }

 Nodo_C += 1;

 }

 Nodo_AC = Nodo_AI;

 Nodo_AI = 0;

 Nodo_C = 0;

}

function busca_limpa(){

 Nodo_C = 0;

 while (Nodo_C <= Nodo_N){

 Fila[Nodo_C] = 0;

 Nodo_T[Nodo_C] = Nodo_N;

 Nodo_O[Nodo_C] = 0;

 Nodo_C += 1;

 }

 Fila_I = 0;

 Fila_C = 0;

 Nodo_C = 0;

 Nodo_TI = 0;

 Nodo_OI = 0;

}

6 Final Touch

When playing a game, the player wants a good
entertainment and a lot of fun. To provide
challenge is something very important to be
planned in a computer game. The breadth first
search algorithm is a simple and very fast
technique to look for a way between two nodes
in a given graph.

As seen in the example of this tutorial, a graph
can be used to create diverse routes of escape,
places of patrol etc. With this it can be made
with that the controlled entities for artificial
intelligence always act with bigger realism
choosing possible ways taking rational decisions
in accordance with the interaction of the player.

