3D GameStudio Tutorial

3D1 – FPS

by

Grimber

Using A6.22

Welcome to my 3D1 – FPS tutorial.

What is 3D1 – FPS? 3D is for 3 dimensional, 1 is for my 1st (3D) tutorial, and FPS is shorthand for First person Shooter. Though we will center on a First Person 3D game, many things you will learn in this tutorial are applicable to any 3D game you might make with 3DGS.

Acknologments: People that deserve a big thanks, without which this tutorial wouldn’t be possible.

· Larry Myers: for creating the 3D Adventure Construction Kit in the early 1990’s. Without whom there would be no 3DGS today.

· JCL: for picking up the ACK where Larry Myers left off.

· All the people at Conitec for continually working on the engine and package to try and keep it up on current technologies. No small task on their part with such a growing and expanding industry and technology anyone would be so overwhelmed to try to keep up.

· To all those that have written tutorials before for 3DGS. It is one thing to sit and create a game, an even greater undertaking to try and teach others what you have learned.

· To the 3DGS community. Such an eclectic group of people with as many diverse skills as backgrounds. With so much knowledge and skills to draw upon, anyone wanting to develop with 3DGS has far more resources to draw from then they could imagine.

· Family and friends, for putting up with my interest in computers and computer games, even when they never understood it.

What you need and need to know before you start:

Materials you should have at hand:

· Computer and 3DGS installed and properly updated (of course)

· A place to work from where you won’t be disturbed by outside interfearance.

· Scratch paper, pencils/pens.

Need to know:

This is not a totally beginner tutorial, I am assuming you have SOME knowledge at the start. By doing the tutorials in the manual, the Level Building tutorial and C-Script tutorials from the 3DGS downloads page you should have enough knowledge to start here. If you haven’t done those, I recommend you stop, go and do them, then come back. I’m not going to cover what they already cover well in detail. Instead this tutorial will reinforce what they teach and build upon them to show you how to put things together to make a game.

What this tutorial won’t cover: There are some subjects we either just won’t have time to cover or would not be efficient to cover in this tutorial. Shaders/materials, multi-player, terrain, physics engine, mirrors, and panels/menus/cut scenes/credits. These all can become complex when working with them and truly deserve their own tutorials.

Understand, there is no ONE way to do something right when it comes to programming or game development. Instead it is a process of imagination, knowledge and problem solving (applying your imagination to your knowledge to get a solution). You will ALWAYS be learning something new, and that will then lead you to even more new things. So this tutorial is ONE persons approach at hopefully, showing you how to lay out your imagination to aspects with working with 3DGS.

If you are using an older version of 3DGS (A4 or A5) you will need to refer to the manual for that version and adjust scripts accordingly.

Anthony Stover ~ Grimber

Basic Movement:

In-order to move our entities around the 3D game environment we will be using the provided engine instruction: ent_move. I would use C_move but some people seem to still have problems using the c_ instructions, but the ideas and concepts behind ent_move and c_move are the same.

Lets start this by creating a simple single room level (use default texture).

Save the empty level into a new folder under your game studio folder (called mine FPS). Place your cbabe.mdl model in this level along with a camera position to one side so you can view the entire room. Save and build it. Run it if you want, you should just see the cbabe model in an empty room and the model is cycling through its animations.

[image: image1.png]
Before we can make our entity move we need to understand how this instruction works and how an entity is handled by this instruction.

ent_move, moves an entity based on that particular entities location and angles relative to itself.

When creating an entity to use with ent_move, its forward facing direction should be in the positive X axis direction and its top should be facing the positive Z axis in your model editor.

Its location (X/Y/Z) in a game level is relative to the model’s orientation to the origin point in the model editor. The origin also serves as the center point for the model’s rotations along each of its axis.

[image: image2.png]
Deviating from this axis and origin alignment will give you unexpected and usually undesired movement results (i.e. you want the model to move forward but it moves sideways)

I don’t want you to be confused on the issue of the Level’s X/Y/Z axis and the model entity’s X/Y/Z axis. These are 2 different things and an entity can be manipulated either way, but the approach is very different to each. Ent_move relies on the entity’s alignment axis for movement.

[image: image3.png]
In this picture the model is aligned so its forward facing direction is on It’s own X axis (as it is in the previous picture of the model in MED). When we move a model with ent_move, it’s based on the model’s axis alignment. So to move forward the model will move in Its own positive X direction, backwards will be its negative X direction. Sidestep left positive Y, sidestep right negative Y, up would be positive Z, down negative Z.

Ent_move instruction looks like this:

Ent_move (vector reldist, vector absdist);

It takes 2 vectors as parameters. What are vectors? A vector is a combination of 3 numbers to set a position/location within a 3D environment. The order of that vector information is X Y and Z axis locations. These 3 numbers will then set a point in that 3D space (much like as you should recall working with geometry in school for 2 points on a grid paper X and Y. just add in Z for depth). For now, we are only going to concern ourselves with the first vector, reldist (short for relative distance, or the distance in relationship to itself).

This vector is used to set a direction and distance for the entities movement relative to itself, and the entity’s X/Y/Z location is ALWAYS at 0/0/0 in relationship to itself (i.e. we aligned our model to its origin point in our model editor) so direction and distance we move the entity is based on directions and distances relative to the entity, not the game level.

For example: say we want our entity to move 3 quants forward. Since our model is at 0/0/0 relative to itself, our reldist vector would be 3 X, 0 Y, 0 Z or 3/0/0. Our model would then move 3 quants in its positive X axis direction. If we wanted it to move backward 3 quants we would give it a negative –3 X, 0 Y, 0 Z reldist vector. So, what would say, a sidestep left 3 quants be? Positive 3 Y, so our reldist vector would be 0/3/0. Sidestep right 3 would be a negative 3 Y

or 0/-3/0.

 So lets now make our levels script. In WED select File -> Map Properties. In the pop up window click the ‘New Script’ icon (middle one) and from the list, select ‘empty script’

[image: image4.png]
Open up this script and we will want to set up some of the basics first. In SED you will see just one line in your script:

// level1.wdl

I called my level “level1” so if you name yours different that’s fine.

First we need to add settings for our video resolution and color depth. I use 800x600 at 16 bit because its usable by all editions. I just set these right after the // level1.wdl line for now:

var video_mode = 7;

var video_depth = 16;

We also need our main function and to load our level, so we can do that all in one fell swoop

function main()

{

level_load ("level1.wmb"); // replace the level1.wmb with what ever you named your level

 // i.e. frank.wmb but don’t forget to enclose the level name in “ “

wait(2); // always need a short pause after a level load for engine house keeping,

 // minimum 2 frames wait

}

Save the script file.

These are all basic instructions that George covers in his C-Script tutorial so I won’t go over them here, but this is the bare minimum you need when you want to load a level. (You can do even less if you’re just making a pure scripted game with no level file but that’s for another tutorial)

Lets now get to our basic movement. As you should know, in order to have any control over an entity it needs an action assigned to it.

action player_move

{

}

We can place this right before our main function for now

We are going to designate to the engine that the entity using this action is the player, so we will point this entity to the engine default player pointer

action player_move

{

 player = me;

 wait(1); // I place a wait(1) here so that the engine doesn’t execute anything past this point yet

 // so it can properly make sure that the pointer is set and I don’t get pointer errors
}

Now we need a loop that will continue to run as long as this entity exists to handle input (like from keyboard) and handle our movement.

action player_move

{

 player = me;

 wait(1); // I place a wait(1) here so that the engine doesn’t execute anything past this point yet

 // so it can properly make sure that the pointer is set and I don’t get pointer errors

 while (player !=NULL) // while our player pointer is not = to the predefined NULL value the loop

 // will continue
 {

 wait(1); // place the needed pause at the end of a loop cycle so the engine can handle

 // other operations, else we will get an infinite loop and lock up our game

 }

}

We need a vector for our reldist vector parameter of ent_move instruction

var move_vec[3] = 0,0,0; // I placed this right after my var video_ lines for now
Also, it is always a good idea to assign a start value to any variable, even if its just 0.

In the move_vec move_vec[0] is our X value, move_vec[1] is our Y value, and move_vec{2] is our Z value.

Now we can place our ent_move line in our action (I’ll remove comment lines from before so it is easier to read).

var move_vec[3] = 0,0,0; // I placed this right after my var video_ lines for now
action player_move

{

 player = me;

 wait(1);

 while (player !=NULL)

 {

 ent_move(move_vec,NULLVECTOR);

 wait(1);

 }

}

Note: even though we aren’t using the 2nd parameter yet, we MUST use a vector there none the less. The engine has a nice vector to use in such cases called NULLVECTOR in that it has no values (nor can you assign any to it).

Now we need a way to adjust our move_vec from keyboard input so our entity moves.

Keyboard: All keys on a keyboard have 2 states of existence, either pressed or not pressed. When a key is not pressed it returns a value of 0. When pressed it returns a value of 1.

I’m going to use the arrow keys but it’s just as easy as using the WASD keys if you prefer.

Up and down arrows will be forward and back movement. Left and right arrows will be for turning. We need the instructions for reading the individual keys (You can find these in the manual).

Key_cuu for cursor up arrow

Key_cud for cursor down arrow

Key_cul for cursor left arrow

Key_cur for cursor right arrow

Key_w for W key

Key_s for S key

Key_a for A key

Key_d for D key

Simple huh?

For moving forward and backwards we can just take the up arrow key and subtract the down arrow key, key_cuu – key_cud . You might say, what? Let me explain.

If I press the up arrow I get a value of 1 for key_cuu, if I press the down arrow key I get a value of 1 for key_cud right?

So if I press no key I get a math value of : 0 – 0 = 0 no movement.

If I press the up arrow I get 1 – 0 = 1, for a positive value for a forward movement.

If I press the down arrow I get 0 – 1 = -1, for a negative value for a backwards movement.

If I press both up and down arrows I get a 1-1 = 0 for a no movement (they cancel each other out).

I’m going to apply this then to my move_vec for my entity’s X direction (the model’s forwards/backwards movement directions).

Move_vec[0] = key_cuu – key_cud;

This will set our move_vec X value to either +1, 0 or –1 quants distance but for entity movement that’s a bit slow. Lets use our previous talk on this and use 3 quants.

 Move_vec[0] = (key_cuu – key_cud) * 3;

So now our entity will move +3, 0 or –3 quants, per up or down arrow key press. We need to smooth this movement out though because of game frame rate. Every machine will run our game a bit different in speed. So to get it to behave equally on all machines we will use the TIME engine factor.

Move_vec[0] = (key_cuu – key_cud) * 3*TIME;

TIME is an engine internal value that is calculated based on overall frame rate, speed, and performance. By using TIME, it allows us to adjust the game to that frame rate as it fluctuates.

Lets plug this line in where it belongs so your script should look like this:

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 ent_move(move_vec,NULLVECTOR);

 wait(1);

}

}

Save the script and run your level. You should now be able to move the cbabe model forwards and backwards using the arrow keys. If it doesn’t, check make sure you assigned the action to your model (resave and build again) and be sure you followed the script correctly.

You can play around with the 3 value (higher numbers make it move faster, lower numbers the slower it goes) but 3 is a good number for the cbabe model.

Notice that she just ‘glides’ along and not actually walks, that part is animation, which we will get to soon.

Turning models facing:

Forwards and backwards is nice but now we want to turn which way it faces.

A model’s facing angle is called its PAN angle. We rotate the model around it’s Z axis to set which direction it faces in our game map. If you surmised (correctly) we are rotating the models X axis direction as we change the models PAN angle.

[image: image5.png]
In this picture our model faces its X axis direction

[image: image6.png]
As we rotate the model around its Z axis (PAN angle) we change the direction the model faces, thus also rotating the models X axis.

The pan angle ranges from 0 to 360 degrees in a counter clockwise direction starting on the positive X axis. 0 and 360 both being on the X axis and being equal for angle value

[image: image7.png]
Since our model always faces the X axis, we need a positive value for turning to the left and negative value to turn to the right.

Key_cul – key_cur

The pan angle itself is not accessed through ent_move but by direct component of that entity.

Out entity is called player (the pointer name) then followed by a ‘.’ period to indicate we are referencing a direct component or parameter of that entity followed by the component name ‘pan’.

Would look like this: player.pan

So we would adjust it like so:

Player.pan += key_cul – key_cur;

We are adding to or subtracting from the entities current facing direction hence the += and not just =.

Since angles use degree measurements, 360 key presses to make the entity turn fully around is allot. We want to speed that up a bit. I found a factor of 4 works nice but you can adjust as you like. We also want to adjust this for TIME as well, just like our forwards/backwards movement.

Player.pan += (key_cul – key_cur) * 4 * time;

So let’s step this out:

If I don’t press left or right arrows, player.pan gets 0 – 0 4*time = 0 added to it.

If I press the left arrow, 1 – 0 * 4 * time = 4*time is added to the player.pan angle.

If I press the right arrow, 0 – 1 * 4 * time = -4*time is added to the player.pan angle.

If I press the left and right arrows, 1 – 1 *4 *time = 0 is added to the player.pan (negates each other out).

Lets plug this into our script just before our ent_move instruction.

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 player.pan += (key_cul – key_cur) * 4 * time; // placed here just before ent_move

 ent_move(move_vec,NULLVECTOR);

 wait(1);

}

}

Save this script and run your level. Now you should be moving forwards and backwards and turning the players facing.

Side-step/Strafe:

This should be pretty easy by now to figure out but lets just run through it…

We need 2 keys to act as our strafing/sidestep keys, (or < > to read them easier) to strafe left/right respectively.

We will be using the entity’s Y axis (if you recall from above) so that equates to our move_vec[1] value. Left is positive, right is negative.

Key_comma – key_period (from the manual do a search on key_ to get related topics).

Strafe move distance shouldn’t be as fast as forward/backwards so lets use a factor of 2.

Move_vec[1] = (key_comma – key_period) *2 *time;

We can place this line RIGHT after our line for forwards and backwards input.

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 move_vec[1] = (key_comma – key_period) *2 *time;

 player.pan += (key_cul – key_cur) * 4 * time; // placed here just before ent_move

 ent_move(move_vec,NULLVECTOR);

 wait(1);

}

}

Save this script then run. Now you should be moving forwards and back, turning and strafing.

Animating the movement:

By now you are probably wondering how we can get our model to be animated.

For this, we will be using the ent_animate instruction.

If you opened up the cbabe model in MED you would see it has 9 animation sequences named:

[image: image8.png]
(open cbabe.mdl in MED, click the animate button (red circle) then click the frames list button (yellow circle) will give you a full list of all the animation frames of the model)

· Idle

· Walk

· Run

· Crouch

· Crawl

· Jump

· Swim

· Attack

· Death

Each contains several animation frames. When the frames are ran through in sequence, they create the impression of movement such as taking a step, jumping up and landing and so on.

The ent_animate allows us to run through the frames of animation pretty easy, lets look at its instruction.

 ent_animate(entity,string scenename,var percent,var mode)
entity, refers to a pointer to the entity in question.

string scenename, is the name of the animation sequence.

percent , the % total into the number of frames into that animation sequence.

mode, allows you to do 2 things, ANM_CYCLE (to cycle through the frames of an animation sequence) and ANM_ADD (to add on animations).

Let’s do a simple animation to get an idea of what all this means. So we will start with the cbabe’s idle animation. Which is where she just stands and moves her head from side to side.

NOTE: People have remarked that some have “stand” instead of “idle” for the standing animation frames. Looking at my models I noticed I have both a cbabe with idle and another with stand, so use “stand” in place of “idle” if that is what is in your model.

Ent_animate(player,”idle”,idle_percent,ANM_CYCLE);

Ok, here we have “player”, the pointer to our entity. The pointer ‘me’ would also work here.

Idle placed in “ “ is the string name of the animation sequence.

Idle_percent is a variable name we will use in-order to calculate the % of the animation cycle.

ANM_CYCLE, is the mode we are telling the ent_animate instruction that this animation repeats itself.

Lets deal with this percent thing.

Idle has only 4 frames of animation (by looking at the animation in MED idle1, idle2, idle3 idle 4)

In % meaning frame 1 would be at 0%, frame 2 at 25%, frame 3 at 50% and frame 4 at 75%. When our percent hit 100% it would roll back over to 0%, back to frame 1.

Wouldn’t the animation be rather jerky with only 4? The engine does what’s called interpolation, it can calculate how the model would look as it makes its transition from frame 1 to frame 2. So say it has to show the model at 18%, the engine can calculate how the model would look at the 18% as each part of the model makes its transition from frame1 to frame 2. Of course more frames would mean a smoother and more detailed animation but at a cost of more memory usage to store that data. Trade offs. So you have to find a happy medium for your particular game when making or selecting models and how many frames of animations it has.

How do we calculate this percent value then?

We define our variable:

Var idle_percent = 0;

Then we need to calculate it to increment (or decrement) at a set .

Then to keep it always within the 0 to 100 value range we use the Modulo (means.. remainder of) ‘%’ operand.

Idle_percent = (idle_percent +5*TIME)%100;

% Modulo lets us roll a value over to stay within a set range from 0 to X, X being our 100 here. I.e. if our idle_percent became equal to 102, the %100 would roll the value over to be now 2

(102 divided by 100 is 1 with a remainder of 2. The 1 is tossed aside and the remainder is set to our value). If I did a %360 a number would range from 0 – 360 then roll over back to 0.

How do we add this to our script?

We want to place it right after the ent_move but before the wait instruction

var idle_percent = 0;

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 move_vec[1] = (key_comma - key_period) *2 *time;

 player.pan += (key_cul-key_cur)*4 *time;

 ent_move(move_vec,NULLVECTOR);

 idle_percent = (idle_percent +5*time)%100;

 ent_animate(me,"idle",idle_percent,ANM_CYCLE);

 wait(1);

}

}

Save and run. You should see your entity cycling through its idle animation.

As you can see, we have 9 animation sequences, if we tossed up all our animations like we just did with idle we would have an animation mess, displaying the first frame of each sequence in order. Hit the wait(1) then the animation gets incremented and the 2nd frame of each animation would get displayed. Instead we need a way to say which animation to play based on how that entity is moving (or not). The if else statement will work well here.

We want our idle animation to run when our move_vec[0] and move_vec[1] is both 0 (our player isn’t moving)

If (move_vec[0] == 0 && move_vec[1] == 0)

{

 idle_percent = (idle_percent +5*time)%100;

 ent_animate(me,"idle",idle_percent,ANM_CYCLE);

 }

else

{

 // our movement animations will go here

}

Why don’t we just use if statements to check things? Because at our example above, if our entity isn’t moving we can run its animation cycle and completely ignore ANYTHING to do with the rest of its animations (for now). In fact it’s a complete waste on your CPU to do:

if (standing) { }

if (walking) { }

if (running) { }

because we already know if we are standing, we aren’t walking or running. One or 2 checks is no big deal, but say 10 checks per entity and your level has 200 entities that’s 2000 checks per frame on top of everything else you got going on. Instead we use a method:

if (standing) YES { }

 NO, then if (walking) YES { }

 NO, then if (running) YES { }

We take our if else above and redo our script

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 move_vec[1] = (key_comma - key_period) *2 *time;

 player.pan += (key_cul-key_cur)*4 *time;

ent_move(move_vec,NULLVECTOR);

If (move_vec[0] == 0 && move_vec[1] == 0)

{

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

}

else

{

// our movement animations will go here

}

 wait(1);

}

}

When you save and run this, you will see the entity will run its idle animation when you’re not moving it. When you do move it, it goes back to its ‘gliding’.

Let’s add our walk animation:

We need a walk variable for our percent.

Var walk_percent = 0;

We need the ent_animate instruction for the walk sequence.

Ent_animate(player,”walk”,walk_percent,ANM_CYCLE);

And we need to calculate our percent.

Walk_percent = (walk_percent +5*time)%100;

var idle_percent = 0;

var walk_percent = 0;

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 move_vec[1] = (key_comma - key_period) *2 *time;

 player.pan += (key_cul-key_cur)*4 *time;

ent_move(move_vec,NULLVECTOR);

If (move_vec[0] == 0 && move_vec[1] == 0)

{

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

}

else

{

// our movement animations will go here

walk_percent = (walk_percent +5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

}

 wait(1);

}

}

Let’s save and give this a try.

IF you now press the up arrow you see your model walking forward, press either turn arrow too and it still walks forward (animated) while it turns. But, we run into something a bit funny, moving backwards, she does the ‘moon walk’. We need to ‘reverse’ the animation for walking backwards. Notice in our walk_percent we are ALWAYS adding 5*TIME, this is why she is moonwalking, we need to be able to subtract 5*TIME if she’s going backwards so we can cycle our animations backwards. So our Modulo would be working at 100 – 0 range for going backwards.

What we can do is read the sign (the + or -) of our move_vec[0] value and apply it to our walk_percent calculation. We do this by using the engine ‘sign(X)’ instruction which returns a +1, 0 or –1 value based on the sign value of X. So:

Sign(move_vec[0]) will give us +1 , 0 or –1 value

Walk_percent = (walk_percent + sign(move_vec[0])*5*TIME)%100;

Now we are either adding or subtracting from our walk_percent value based on our movement vector and Modulo is keeping our walk_percent between the range of 0 -100

Let’s replace our line we had before with this new line and give it a try.

action player_move

{

player = me;

wait(1);

while (me != NULL)

{

 move_vec[0] = (key_cuu - key_cud)*3 *time;

 move_vec[1] = (key_comma - key_period) *2 *time;

 player.pan += (key_cul-key_cur)*4 *time;

 ent_move(move_vec,NULLVECTOR);

 If (move_vec[0] == 0 && move_vec[1] == 0)

 {

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

 }

 else

 {

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

 }

 wait(1);

}

}

Save and run. YAY! She now moves backwards instead of moonwalking now.

Unfortunately we don’t have an animation for strafe, so for now we will leave it as it is.

Hopefully this will be useful to you to have now as a generic base movement script for your player-controlled entity. We will add more animations in as we go with this tutorial, but for now we are at least up and walking around and hopefully you understand the very basics of ent_move and a bit of ent_animate.

View:

Up to now, we have been working with a static (non moving) camera view into our game level:

[image: image9.png]
Typically you have 3 types of 3D games, you could break this down allot further but for here we will be very general and say 3. The First Person View, Third Person View, and Isometric View.

All of these views are based on the cameras relative position to the player and game level.

In a first person view, we are literally looking through the eyes of the player entity (as if we stepped into that persons body).

Third person view, we are viewing the world locally around the player. Typically the camera follows behind the player, always keeping the player in view and so that the player entity is the center of attention for the camera.

Isometric view, the camera is well above the player entity and may or may not actually follow the player’s movements. In isometric view we are concerned about the overall game area within the view itself in which the player is just a part of that area vs. being the center of attention.

[image: image10.png]
First Person View

[image: image11.png]
Third Person View

[image: image12.png]
Isometric View

It’s camera location that really sets the difference to these games. A rule of thumb, when you make a game, by determining the view point it will set the amount of detail you can get away with in your game level. First person takes the greatest details (you are close up and personal to everything) while isometric you can get away with lower quality models, animations and textures. You really should too, to get more performance, because with isometric games you usually want to handle displaying many more things at once than in a 1st person game. At further viewing distances the close in details aren’t noticed so usually are not needed. In a FPS (first person shooter) a 4-frame animation to swing a sword may look chunky so you will want more frames, but in an isometric view, 4 frames may look smooth as silk after the engine handles it.

Since this tutorial is about First person we will work with that view, but everything I’ll cover in this tutorial is usable in ANY view because its about the 3D environment, First person is just our view point for this lesson.

The ‘beginner’ (and you will see this allot) way to set the camera location is make the camera X/Y/Z equal to the player entity X/Y/Z. This is wrong for a FPS, why? Lets look at our model in MED again.

[image: image13.png]
A model’s location in a game level is based on that models Origin point which is the 0/0/0 location in your modeling program. If we moved our camera to our cbabes X/Y/Z location we would be looking out right where her legs meet her hips. If we moved our model in the modeler so its eyes would be at the origin point, we would mess up how our model rotates around its X/Y/Z axis.

Instead we need an X/Y/Z point relative to her eyes, 2 ways we can do this. We can adjust the Z value till it gets roughly at the eye level by getting the Z distance from the origin to relative location where the models eyes would be.

Camera.Z = player .Z + 27;

[image: image14.png]
Or we can get a vertex off the model itself and with that we can get an X/Y/Z location

[image: image15.png]
Lets try the first way, it’s the easiest (for now). The vertex method we will do in a later part of this tutorial.

First we will set the camera X/Y/Z to the players X/Y/Z location. Simple instruction to do this is the vec_set () instruction

Vec_set(1st vec, 2nd vec); copies the value of the 2nd vector to the 1st.

So:

Vec_set (Camera.x,player.x);

This would be the same as if we typed:

Camera.x = player.x;

Camera.y = player.y;

Camera.z = player.z;

We make sure to specify .x because both camera and player have more than one vector associated to them. .x directs us to the first value of the X/Y/Z vector, the instruction does the rest

Now we want to adjust our camera for Z height:

camera.z += 27;

We add 27 quants to our camera location to get us up to eye level on the model. Where do we put these 2 instructions then? Right after our animations but before the wait. The camera location should, as a rule of thumb, always be updated after movement, so that movement and animations can all be calculated and adjusted for first, prior to repositioning the camera view to the players new moved to location.

We don’t put our camera in its own function or loop because its location is totally dependent on the entities current location. Being in its own loop or function the player location information not be totally correct when the camera location gets updated. I.e. the camera may update BEFORE the player moves.

action player_move

{

…

…

…

 else

 {

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

 }

 // camera updates

 vec_set (Camera.x,player.x);

 camera.z += 27;

 wait(1);

}

}

We also need to deal with one more aspect. The direction our camera points.

If we go with this script as is, the camera will ALWAYS face one direction, not very good for a FPS. We need it to face the same direction the player entity faces, if the player turns the camera needs to as well. That direction is called? PAN. We have to set our camera.pan to = our player.pan

action player_move

{

…

…

…

 }

 else

 {

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

 }

 // camera updates

 vec_set (Camera.x,player.x);

 camera.z += 27;

 camera.pan = player.pan;

 wait(1);

}

}

If our camera updating was in another loop or function, our camera pan angle may not ever be correct with the player.pan. For a 3rd person game you can be safer in using a function, with an isometric game you really WANT to use a while loop for the camera updates.

Save and run your level.

Does the camera seem to tilt downwards a bit? It should, as its taking the down angle from our camera position we were using before hand. (the little camera looking thing we added to our level in the first place). Go ahead and delete the camera position, resave and build the level. Now run it should be a more level view.

Camera Tilt:

Normally in a FPS you have the ability to look up and down. To do this we need to rotate the camera around another axis. This angle is called TILT. This lets us revolve around the Y axis.

[image: image16.png]
For this we are going to use the page up and page down keys to look up and down.

Key_pgup

Key_pgdn

Since we are adjusting the cameras tilt angle it would be: camera.tilt

The angle system layout for tilt is the same as pan but the Y axis is now the rotation axis because we rotate around the Y axis (pan rotates around Z).

[image: image17.png]
Positive tilt rotation is up, negative tilt direction would be down.

Key_pgup – key_pgdn

For now we will rotate it at the same speed factor as our pan, 4*time.

End result should look like this:

Camera.tilt += (key_pgup – key_pgdn) * 4 * time;

We will stick this line in just after our camera.pan line.

action player_move

{

…

…

…

 {

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

 }

 else

 {

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

 }

 // camera updates

 vec_set (Camera.x,player.x);

 camera.z += 27;

 camera.pan = player.pan;

 camera.tilt += (key_pgup - key_pgdn)*4*time;

 wait(1);

}

}

We save and run our level. You should notice the camera keeps rotating around while we hold page up or page down

[image: image18.png]
Even where the camera is upside down .

[image: image19.png]
Or where we are looking inside the model.

Let us fix the first problem first. A range for tilt.

Lets use a range of +75 to – 75 for our tilt range where 0 tilt is straight ahead, for a total of 150 degree range (75 up + 75 down).

[image: image20.png]
We will need a variable to store our adjusted angle in from our page up and page down key presses

var temptilt = 0;

Now we need to check if our temptilt value is greater than +75 or less than –75.

temptilt += (key_pgup - key_pgdn)*4*time;

if (temptilt > 75)

{

 temptilt = 75;

}

else

{

 if (temptilt < -75)

 {

 temptilt = -75;

 }

}

Now we can apply out temptilt to our camera.tilt

camera.tilt = 0 + temptilt;

We add the temptilt to 0 because 0 is our tilt we want when the camera looks straight ahead, the temptilt then sets the arc deviation (+/- 75 degrees) from that 0 angle.

var temptilt = 0;

action player_move

{

…

…

…

{

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

}

else

{

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

}

// camera updates

Vec_set (Camera.x,player.x);

camera.z += 27;

camera.pan = player.pan;

temptilt += (key_pgup - key_pgdn)*4*time;

if (temptilt > 75)

{

 temptilt = 75;

}

else

{

 if (temptilt < -75)

 {

 temptilt = -75;

 }

}

camera.tilt = 0 + temptilt;

 wait(1);

}

}

Save and run. It now should give you a nice tilt range but not circle around, but we can still see inside our model. Lets add one more aspect to tilt before we address the model issue.

We need a key press to re-center our tilt back to 0 instead of trying to twiddle with page up and page down. Lets use the Home Key

Key_home

If (key_home) { temptilt = 0; }

Notice I didn’t put if (key_home == 1). Why? Because by default any key pressed returns a value of…. 1, 1 means true. A key not pressed returns a value of… 0, 0 means false.

Plug this line into our script and we are basically done with camera tilt (for now).

action player_move

{

…

…

…

{

idle_percent = (idle_percent +5*time)%100;

ent_animate(me,"idle",idle_percent,ANM_CYCLE);

}

else

{

// our movement animations will go here

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

}

// camera updates

Vec_set (Camera.x,player.x);

camera.z += 27;

camera.pan = player.pan;

temptilt += (key_pgup - key_pgdn)*4*time;

If (key_home) { temptilt = 0; }

if (temptilt > 75)

{

 temptilt = 75;

}

else

{

 if (temptilt < -75)

 {

 temptilt = -75;

 }

}

camera.tilt = 0 + temptilt;

 wait(1);

}

Looks good so far. Let us fix our looking through our model. For this we need to look into our parameters that define a view.

There are several parameters to defining a view but we need the one called GENIUS. Genius is basically a pointer to an entity that is NOT to be displayed within a particular view. Our view is being the ‘camera’, the entity we don’t want displayed is ‘player’ so we assign the pointer value of player to the camera genius pointer.

Camera.genius = player;

We place this line before our while loop but after the line that we declare this entity is our player.

action player_move

{

player = me;

wait(1);

camera.genius = player;

while (me != NULL)

{

…

…

…

 wait(1);

}

}

Save and Run, tilt the camera down. You should no longer see our player entity.

[image: image21.png]
Well, we came along ways so far. We learned how to get our player entity moving, running animations to that movement, and setting up a basic view for First Person Viewpoint.

Where do we go from here? We will start with some basics on level design and some basic interaction with level components and build from there.

Basics of level building, Basic level interaction and more player movement control:
Basic Game Design Theory:

Before we start laying down any level work, we need to talk a little about Game Theory. Though entire books can be written about game design, we need to talk about some general concepts. Yes, you might be saying you only want to make a simple game, but ANY game needs to have a plan before you even sit down to make a script, a level, a model and so on. Game creation is allot like writing a story or book, in that you have pretty much the same elements to deal with. Character(s), plots and sub plots, context, view point, theme, genre, enviroment(s), advisaries, even dialog.

When the writer of a story or book deviates from his/her story or characters or plot you tend to get bored or disgruntled with the writer, and give up reading or become disappointed in the overall work. Games are no different in that regard, too much deviation or no real thought process behind the game itself makes for a unmemorable or even worse, a disliked game. Does this mean we need to write out a full long story for every game we make? No but we do need to outline the overall flow and structure to the game, like a good author will before sitting down to actually write the story. Even a game simple as Tetris has structure.

This structured outline will not only give us a basis to keep our overall story flow in order but also provide a frame work for game related issues such as:

Visuals: (images,textures, styles and designs for architecture and items/equipment) also greatly effected by the overall mood of your story. You can then focus your consintration on the physical look to the game in a specified style.

Elements: what things make up this world environment? Do certain levels of technology exist in this world (doesn’t make sense to put a laser gun in a game set in the modern world without VERY good reason to do so) or are technologies from different eras meshed together and why is this so? (lasers and iron swords because there are certain types of creatures or protection that totally resist laser beams, or only effected by iron). Why do goblins in a fantasy setting have machineguns yet no one else in the entire game has one? Don’t laugh (too much), this was done in a successful commercial game and in my opinion ruined the game.

Environment: Level maps, the player is just passing through them, but everything has/had a purpose before the player showed up. If the player has to swim through an underwater system or crawl through airducts to get to the next area of a map, did the people who built this place also have to do the same thing? (doubtful) So why should the player have to? Passage way caved in, door only opens from a control booth and that is only accessed from the other side of the door? Be sure not only you (the designer of the game) knows why, but the player as well. Something placed in a level just because it might be cool but has no real reason to be there.

Sounds: Music and sound effects make a big part of a game as well as visuals. The right or wrong music or sound can seriously detract from the game experience.

Performance/Pace:

Sometimes game developers, like an author, can either put so much into a game (or story) that the player or reader is so distracted by details they, lose track of the story. In a book if an author spends 2 pages describing how a character looks, and repeats that process about every other chapter, you start to skim past those sections because you are bored with it. They slow down the story, which you are into and by skimming past them you usually end up missing little plot points they slip into those lengthy descriptions. Now your lost in what happened in the story. Games are no different, too much not only becomes just clutter but slows down the game. Literally it can and usually reduces performance besides detract from the overall game play plot.

The opposite also happens, sometimes there is so little to go on (in a game or a story) the player/reader comes away with disappointed. If the player/reader gets bogged down too long in a part of the story they start to lose track of the story and purpose of play/reading. Example: if a sub plot in a story/game is to rescue Dr. John from a band of terrorists but the writer/game developer has to take you through 5 chapters/levels of badguys and puzzles to get to him without advancing the story at all, then you’ve lost the player/reader from the story and its now become nothing but shoot, scoot and kill game.

Immersion: This comes from a balance of the above aspects of visual/sound and story. A good writer can give the reader JUST enough visual feel in a story to stimulate the imagination to fill in the rest while keeping a good pace for the overall story/plot. The reader then become so engrossed in the story it becomes one of them “can’t put it down till I finish” stories. You get thoughts in your head towards the main character “ don’t go in there… don’t do that… OH! You dummy ‘I’ knew not to do that why didn’t you?!?”

In a story the author has to rely on just words to stimulate your imagination and 5 senses. In a game we have the ability to stimulate 2 of those senses directly, sight and sound. With those we can pull up the players imagination for the other 3. If we balance the sights and sounds right we can achieve other imagined senses.

Example. We make a fantasy RPG game, one level is a dungeon. That dungeon is old and haunted. So if we make it:

Visually dark textures on the walls that show crumbling, aging masonry with moss/fungus growths and occasional water stains. A few visible cracks or area walls have crumbled reviling earth behind it. Debris and water stains on the floor, maybe a few spots where shallow brackish water has pooled on the floor. Some dips in the floor where the ground has settled and the flooring has sank into those depressions.

Some old spider webs here and there. Rotting wood, moth eaten faded cloth, rusted/tarnished metal. (like something massively heavy is settling the earth). ‘Splushing ‘sounds as walk through shallow water puddles.

Doors creak on rusty hinges. Faint skittering sound (like a rodent or bug or WORSE just went by in the dark areas outside your torchlight) Eerie music with hints of moaning winds, chimes/bells/rattles, deep base sounds.

You can almost smell the rot, the foul water, and the wet earth. Taste the stale, damp air. Feel the dampness in the air, the wind blowing through the dead corridors, feel your skin crawl as what might be hidden just outside the range of your torch light..

Timing is part of you game plot. Take our dungeon above, don’t toss some ugly monster out at the player soon as they step in the dungeon. Let the player feel, see, smell what is there first. Give them time to get into the environment before you spring some nasty out of the shadows at them. I’ll give you 2 examples from games I had played.

First was in Half-life, crawling through the airducts. Pitch black other then for using a flashlight that didn’t have a wide lighting arc and limited range. You could feel as if you were in a very confined space with blackness all around you. Faint hints of air circulating through the ducts and after a bit of “clomp clomp” booted feet crouched walking/crawling in these ducts. Suddenly heard skittering sounds , getting louder, then suddenly a host of nasty little crawly bug like monsters were in your flashlight range crawling and leaping at you VERY fast. Talk about panic on the trigger button and sweeping the light back and forth across the duct to try and get them all! Now your heart is going, your sweeping the light around more ducking around corners fast, first sound you here your looking both ahead and now looking behind you for anything fast as you can.

Second game was Alien vs. Predator, playing the marine levels against aliens. Just picture the movies, dark corridors with the blood red strobing lights, the blaring siren, steam coming out of vents. Small duct works with their cover screens ripped open above and below you in the ceiling/floors and walls, the military combat music (from aliens 2) playing in the background. You hear occasionally faint screeches and skittering of the aliens but seems far away. Suddenly after rounding a few turns you have one jump out from the shadows or a duct overhead, these things leap and scream at you as they charge in and they not only run along the floor but crawl along the walls and ceiling. Kill one and in the distance (someplace) you here others screech because they heard that one just die, so now they are alerted and out looking for you.

Both examples the key is not the darkness of both, but the fact the developers brought you into the environment, sight and sounds to set the mood, feel, and threat well before they tossed anything at you. By then your nerves are set, your sitting up, your intent on ANY sight or sound till you find that exit. They got you as the player, immersed you into their game and their story. A game that immerses its player creates a lasting memory on that player, makes a good game to that player.

Mechanics: these refer to how things work, not how doors or other such things are scripted. What I mean is what is the chances my player shooting a gun hits an enemy, how much damage does it do a hit, how much health does an enemy or player have, can they increase that, how do they heal wounds(if at all). A good paper and pencil Role playing game is a good place to look for examples of how to set up a mechanic system. It needs to be balanced. Say if both a player and enemy have the same type gun, they should do the same amounts of damage when shooting.

Scale: No not the scale of movement, models, or level map. This is about scale of difficulty to the game. For a simple idea, think of a volume control on a stereo. At the lowest setting is no volume, slowly increase it till it’s at max volume. Game and advisary difficulty should work the same (with a few dips for variation) in the beginning of the game it should be easy for the player, as they learn how to even play things should be easy and survivable (unless they stand still and LET some bad guy kill them) and the game difficulty should peak out at max volume with the finally advisaory(s). Something should NEVER be where the player cannot beat it. As the developer YOU may know how but the player doesn’t. If it’s a secret (such as a weakness to a particular weapon/spell or some trick to play) then you need to provide hints (part of the story line). Normal advisaries should not be hard as a key advisary. Think of StarWars storm troopers, they may have a few varying degrees of difficulty to fight (trooper, trooper sergeant, trooper officer) but never as hard as say Grand Moff Tarkin, and in like respect Moff Tarkin in no way as hard as Darth Vader (could be your ultimate, max volume advisary in a star wars like game).

The player is the HERO. Even if the hero character is bad (like Riddick, he’s still the hero like character), so that means the hero is better then the average Joe badguy of your game. Else your player could never do Heroic things like take on a company of storm troopers or wade through a mess of goblins with his sword

Heroes real advisaries are the better then average Joe bad guy and especially the major villains (whom are better then the average and better than average badguys)

Since this IS a tutorial about building the basics of a FPS and working with the issues of effecting and controlling our game level environments we will have to step away from the structure outline in-order to cover the technical topics. Hopefully though, when your ready to sit down and build your own project, you will come away from this tutorial with enough of the technical know-how to approach and stick to your game structuring outline.

Let’s create a simple partial sample structure outline for our game:

Theme/Genre: I like a good Sci Fi like game for first person shooters and the Cbabe.mdl would work good in a Sci Fi game. Not a dark Sci Fi cyberpunk, more of a blasters and robots, Buck Rogers like, will work.

Bad guys: A new Robot with a new form of A.I. installed , but the A.I. programming was flawed and now sees itself as superior to people. It is building an army of robots to take control of people, but it has enlisted a faction of humans to its cause that believe artificial intelligence could run things better then corrupt politicians.

Equipment: Ballistic Gun (pistol), laser gun, laser rifle, grenade, particle missile launcher. Scanner/detector, Body armor, personal energy shield, First Aid kit, ammo box, energy pack, missile pack, flashlight.

Environment(s); City building (research lab?), city streets, city building (A.I. faction HQ?), space port, space ship, asteroid base.

We can keep at this and list Sounds, Visual elements, texture styles etc. Then we can break these subjects down even more. Example:

Environment:

City streets:

Random NPCs wandering, some faction badguys with robot or 2, especially near HQ

hideout, random traffic in streets (hover car chase mabey?), overhead train (train shoot

out mabey?)….

By listing elements of the game, then breaking then general elements down, and break the sub elements down we can create our master guide to our game. This is not only useful, lets us fill in gaps we didn’t think of before and let us trim the fat off things that don’t fit our story line. If your into a team project its basically required to do this in-order to keep all on the same sheet of music to get the project done.

Our basic game story (short):

Techno Labs developed a new form of deep space robot, meant to travel to locations, do scientific studies on planets, asteroids, moons and report that data back in-order to do unmanned space exploration. The prototype robot S.A.M., became self aware and tapped into the city data system, found out about “Beta”, an A.I faction (a group that believes artificial intelligence’s should rule humanity instead of corrupt politicians). The Robot, kidnapped Dr. John, the A.I. developer and with the help of “Beta” fled the planet to an abandoned mining colony asteroid. There it is reprogramming droids to work with “Beta” to make “Beta’s” goal reality with S.A.M. to be installed as the overall leader of humanity.

What the player knows at start of game:

The local crime of the city has escalated in recent weeks, Law Force (the local police) has its hands full with break-ins to tech shops, graffiti, droid thefts, and seeing organized gangs on the streets. Law Force contacted you, a freelance “investigator”, to investigate the disappearance of a Dr. John from Techo Labs. There is no evidence of foul play nor has any one claimed to have taken him.

So far sounds interesting, and I’m just making this up as I go (
Now being armed with a plot, story and an outline to build our game, lets get back to the action of building levels, and making our scripts (
Basics of Level Building:

In our FPS folder I took our first test level and moved it into a folder of itself, I then coped our script and cbabe model over to another new folder called level1, this will be where we will build our first game level.

During your planning stage you should draw up some basic maps to each of your intended levels, scratch paper or even graph paper will work well for this. Don’t need to be detailed, just the basic layout and how each area of a level will compared to eachother and any key points to each area.

[image: image22.png]
VERY crude sketch but it gets the idea. When building areas you should keep to the barest minimums to start. Floors, walls, ceilings. Don’t go for complex designs in your BASE construction. Complex gets added in AFTER you get your square/rectangular shapes in.

Note: on our map we have 4 main aspects to deal with. Player start point, Stairs, A 2nd floor ledge and a level transition. Not much to start with but they let us address some major added topics, Climbing stairs, gravity/falling, and changing levels. We will also add into our player movement the work to handle running and jumping in this level. First, lets build the level (
 I create a new blank level in my new level1 folder called TLlevel1 (Techno Lab level1). Instead of the hollow block building method you learned in the manuals tutorial, we are going to build each surface separately (floors, walls, ceilings). Use of CGS cut can cause portal count and surface plane problems.

First make sure snap to grid is on and set to either 8 or 16. I’ll build the hallway floor with the level transition first. Placing that centered on my level origin. I place my Cbabe model at the origin then, instead of using ‘scale’ I adjust my blocks usually always with just using ‘face move’ option, I place a small block make its Z axis thickness 8 quants and its top surface even on the X axis. I then face move the other faces Y and Z to get the size of the floor I want, always keeping it sized so its centered on my level origin

[image: image23.png]
I continue this till I have the floor done for the top level change hallway and the room with the ledge.

Looking at our cbabe model its aprox 65 quants tall for the ledge we want it to be higher then our model so we will build a wall where our ledge is of 80 quants high. We don’t want the blocks to overlap eachother, just touch (by the snap to grid).

[image: image24.png]
Then continue on with the remaining floor.

[image: image25.png]
Now, we can start adding our walls. Since this is a First Person view game we will place our walls on TOP of the floor blocks. What’s the difference? Remember our point of view determines how we see the world. In a FPS the most relevant surfaces we see and notice are.. the walls, floor and ceiling are secondary. In a 3rd person and Isometric view game we spend more time looking at the ground then walls and even less at ceilings. When we go to apply our textures to surfaces, it’s a bit easier to see the entire surface to get a good fit then have part of it hanging down hidden from view by the floor.

Why not just touch edges of walls and floor and solve it all the way around?

[image: image26.png]
Because for one, it creates visible gaps between the blocks, even if you cannot see it, the engine can get past them during build time. Gaps also create holes in the floor that players can fall through. End result being you get texture smearing along the wall and floor as the engine looks past the gap into infinite level space beyond and players falling through floors. Get a wall or 2 made and you can start duplicating them move them around and face move to make them fit. Easier then add a new block for every wall. You may have to turn snap down to 4 at times to get edges to line up but that’s fine, just make sure your using snap to grid all the time.

Should look like this when walls are done:

[image: image27.png]
For our ceiling blocks we can just duplicate our floor blocks and top off each section (with a few minor face move adjustments). To finish off the basic construction we will move our cbabe model to the spot we want to start from, and we are also going to add a camera position there. Then we will load our level1 script to the level.

[image: image28.png]
Save.

Notice we didn’t do any texture work at all, nor any complex geometry like arches, curved/dome ceilings, and so on, only the very basic structure. These details can be added in as you detail out a room. If you want things like doors and windows you just need an opening big enough to hold the door and any detail work to flesh it out later. Stairs are also detailing, if you have some of these items already made, you can temporarily load them into the level just for reference as your laying down blocks.

Texturing.

For this tutorial I’m only going to use the Standard.wad and the one default texture for textures. Why? Because EVERYONE should have it. Second, some say they are substandard/poor textures which they aren’t. They are OK and can be made to look good by learning how to work with textures, lighting and shadows. If you can make an OK texture look good, then you can make a great texture look outstanding.

Unless your making a psycho ‘acid trip’, game try to avoid using textures that stand too much in contrast to each other in the same location. Instead try to visualize what just the basic walls floor and ceiling would be constructed of based on your theme and environment location and even purpose of each room was constructed for. (the player didn’t build that room , someone else did and they did so for a reason).

So lets number our rooms 1 through 4 for this level and we will decide what each room is for.

Room 1: entrance to Techno Labs. As any business an entrance is a First Impressions room, meet and great customers, clients, even community leaders. Should then look bright, cheerful, mabey a few plants and displays of what Techno Labs is proud to show off. to visitors. So we got an idea, not cluttered but a bit showy.

Room 2 Stairs room: Front hall, receptionist desk, mabey a big sign saying TECHNO LABS with its motto “We serve to invent new ways of life” a painting or art decoration or 2. Walls/floors a little bit warmer for a semi office environment. Stairs mabey of a metal grate tread and tubular metal handrail

Room 3 Top of stairs. Waiting room, lounge for guests/prospective employees. Few chairs, mabey a video monitor, coffee or drink machine. Walls and floor should be about the same warm environment as Room 2 since they are joined

Room 4 Connecting hallway. This hall leads off to offices and elevators to the labs, same warm walls, as Room 2 and 3, mabey some pictures/plaques of employees or businesses they provide products for, Carpet runner on the floor.

OK we got a fair idea how each room will look without details so we got an idea how to proceed with base textures.

First we add our standard wad. Then open the default texture list, right click the default texture, choose settings. A window will pop up with properties of that texture. We will use these properties allot but for now, on the default texture we only need one. Select the NONE option at the bottom and press OK. This sets this texture to NOT RENDERED meaning when the engine builds the level, this texture (and any surface covered in it) is ignored. Now select the ‘Select’ button in WED and draw a box around the ENTIRE level we just made and double click on the default texture. This will apply our default NOT RENDERED texture to all surfaces.

[image: image29.png]
This is one of those Level building tips (ANY surface that the player will never view should be textured with a NONE Rendered Settings flagged texture. By doing this it cuts out all those surfaces during the build process (you will have much lower portal count and number of surfaces that have to be calculated for lighting) and cuts down on what the run time engine has to load and display for each region.

Easiest way to do this is set everything to a none rendered texture first, then apply viewed textures to the surfaces the player will see. That way you won’t miss any none viewed surfaces (like between blocks).

Since we outlined our 4 rooms above lets start on Room 1 , bright and cheerful in a Sci Fi setting lab.

For the walls, white too bright, yellow or blue shades too loud for an office. Lets use the bright02 (kinda of a peach color) on the walls. We will just apply it for now, not worry about adjustments or scale, we just want to get it on the walls. Best to work in 3D view for this work. Select a wall (be sure you can see it in one of the other 2D views too, shows up red for the selected wall) Right click the mouse over that wall and select Properties from the menu. Select the surface TAB. You will see arrows upper right corner and a number ‘Surface# X of 6’ X being a number 1-6 of the surface currently selected. (more complex geometry like pillars will have more surfaces). In the 2D view the selected surface will be highlighted on the block (usually bright green but sometimes it turns gray color). Page through the surfaces till you get the one facing the inside of the room.

[image: image30.png]
now, with this all selected, we just double click the texture we want and it will texture this surface. Repeat this with the other walls. You will get the hang of it to where you won’t even close the properties window, just select wall, be sure your on the right surface and texture.

I pulled the roof off Room 1 so you can see how it looks, should appear like some painters went in and just painted the inside walls. All the remaining wall surfaces won’t be seen, so won’t be drawn with our NONE flagged texture..

[image: image31.png]
We now need a floor and ceiling texture to paste down. Then we can compair how they look together before we do any adjustments. If the textures don’t look good together we can easily replace them.

Tiles3 should look good on the floor, and the plaster texture on the ceiling I think.

[image: image32.png]
We aren’t worried about how they fit yet. Just how they LOOK with each other. In my opinion this feels like some business entrance hall for colors and texture. To make things easy we will repeat the same textures in the hallway, then start on Room 2. If you make a mistake, and apply a texture to the wrong surface, no problem, just reapply the default texture to that surface and try to get the correct surface again.

Room 2, think we can go with the same floor as room 1, walls we can try the woodfvert and ceiling the lamella1. Looking at it I decided the inside wall closest to Room one we should use the bright2 texture on that too so we have a better transition from the Room1/hallway walls to the Room2 Walls. Don’t forget to get them small edges where the walls meet.

[image: image33.png]
Overall I think that will work for Room 2. Lets move on to Room 3.

Room3 is a Waiting area I like the wood from Room2 so we will carry that over to Room 3 for the walls and even down the hallway. The Floor I think should look carpeted, redplain texture may work for the carpet, and the ceiling we should use something that looks a bit more darker like tile2. There is a lip on the ledge between room 2 and 3, I found it looked better if I covered that lip with the carpet texture so it sort of spills over instead of making a sharp edge.

[image: image34.png]
Go ahead assign the player_move action to cbabe, save and build your level. Need to edit your script and make SURE you change the level_load line in the main function so its named after the level we just made.

function main()

{

level_load ("TLlevel1.wmb");// be sure you got the right level name here

wait(2);

}

Run and walk around in the first 2 rooms a bit and enjoy your work so far(
A few things you should notice, the ceilings seem a bit low, the textures seem to be too big (but we expected that) and everything is drab (because we haven’t started dealing with lighting or details yet). Lets adjust the ceilings first, I just set my move restrict tool to up and down, 16 for snap and selected face move and dragged each wall 32 quants higher. Resected move and moved each ceiling block up to the tops of the walls again.

Save, build and run. Notice our build is fast (mine takes 2 or 3 seconds) fast builds keeps us working. Keep out all the details, models, none render textured surfaces and such lets us stay with a fast build.

Everything seems to be good so far, next we are ready to start adjusting our textures to our walls. We didn’t start this till now so we could change textures around and make any needed block adjustments.

Lets start with the floors first, so back to room 1. Select the Floor block again and bring up its properties to the correct surface that has the tile texture. You will notice to Buttons on this surface tab window, Texture and Flags. Looks like this (the flags window is inset, cannot bring both up at once)

[image: image35.png]
I will try to cover MOST of the options in these 2 windows because knowing how to work with most of these settings can make or break your game visually before you place any lights, or use materials or shaders.

First we need to cover texture tiling. Nope, not the name tile of the texture, but the process in how a texture is laid down repetitively ‘like a tile’. This tiling is begun, not based on an edge of ANY block but the origin point of the level. Lets make a test level to see how this works…

I’ll make a new folder in our FPS folder called textest1, then in that create a new level and save it as also textest1. Load our standard wad into this new level. Insert a new SMALL cube and align one corner to the origin point of the level. (be sure its lined up in all 3 2D editor views)

[image: image36.png]
We need to understand the basics of quants, origin, axis to understand how textures are tiled in WED and the engine.

In our level the origin point is the center of our game. Everything in the level is referenced in relationship to this point (just like our ent_move, an entity moved based on a direction in relationship to itself). Of course this origin point is in the middle of our level. We then have 6 world directions, these are mapped to 3 grid axis: + and – X, + and – Y, and + and – Z. Each 2D view displays 2 of these axis directions (XY for top down view, XZ for Back side view, and YZ for Side view)

A quant is the basic distance of measurement to our level. By default settings the grid system is broken down by units of 8, 8x8quants to the smallest square, 8x8 - 8x8quant squares (= 64x64 quants square) for next largest square, 8x8 – 8x8 - 8x8quant squares for the next after that, and so forth… (this can be changed in WED preferences under GridLo = GridHigh = settings, but I recommend you stay with 8)

Many ask, “how big is a quant in the real world?”. A quant isn’t a measurement that is equated to real world measurements, instead a quant is the size of a texture pixel that the engine can display. Lets see what that means with an example. With our block located on the origin and aligned to the axis lets put our “tiles3” texture on the entire small block. After texturing it right click the “tiles3” texture and select settings to pull up that textures information.

[image: image37.png]
In the 3d View I hand drawn in the X/Y/Z axis and you can see the level origin in relationship to our small block. We know our small block is 8 squares wide, each square being 8 quants for a 64 quant x 64 quant square side. Now look at our texture information it says its 64x64x16 meaning this texture is 64 pixels by 64 pixels at 16 bit color depth. The scale settings below the texture size says scale X 1.0 scale 1.0 meaning this texture isn’t being scaled up or down from its original size. In the 3D view our texture fits perfectly. So a 64pixil x64 pixel texture on a 64 quant by 64 quant block equates to a 1x1 pixel = 1x1 quant.

This should also now clue you to how textures are laid down in a level. They are mapped to all surfaces starting from the origin. If you look at all the sides of cube you should see all the surfaces are nicely textured to fit because the tiling of a texture is in all directions X/Y/Z aligned to the origin. If I moved the cube 32 quants down the + direction of the X axis, what do you think will happen?

[image: image38.png]
Texture looks like its now shifted half ways. In fact its not shifted, the texture is tiled, it went from 0/0/0 to 64/0/0 now it starts over again… tiling. Our block is sitting half ways across the +64X quant line, exactly where our 64x64 sized texture would end and start to repeat. Lets grab the left hand face and drag it back to alignment to the origin, leaving our right hand face where it is.

[image: image39.png]
Here we can see more clearly how the tiling repeats. The key is knowing the pixel size of our texture. IF we were using a texture that is 128x128 it would repeat every 128 quants.

Before we start adjusting textures one serious note: When you adjust the texture on a block surface, it effects only that surface. IF you move that block that texture will adjust based on its new location in the level and the texture tiling. There is a flag checkbox in the settings window for a block (properties TAB) to ‘lock’ its textures in place. So if you intend to move a block after texturing I recommend you use that.

If you adjust the settings of a texture in the WAD display, any surface you apply that texture to AFTER that setting adjustment, those adjustments effect that surface(s). i.e. if I changed the scaleX of a texture down to 0.5 in the WAD, then applied that texture to 3 different surfaces, those surfaces textures would also be at 0.5 scaleX.

Lets go back to our level now and start adjusting the floors. The tile is too big we want to make it much smaller, to do that we are going to adjust its scale (just like if you used the scale tool for a model or block in wed, it enlarges or shrinks). Since we want it to keep its tile shape we will want to reduce scaleX and scaleY evenly. After just messing with the scale I found I liked scaleX 0.2 scaleY 0.2 so I go and adjust the hall and Room2s floors to the same scale as well.

Size is good but all around our walls the tile doesn’t match up.

[image: image40.png]
We can use the X offset and Y offset to move our texture across our surface to line it up, but we will notice that we align one side up and everything else is off. (moved the ceiling off Room1 so you could see what I mean)

[image: image41.png]
Believe me, when I tell you when trying to get everything to line up, it can take you hours and hours of twiddling with offset and scale. When the truth is, don’t bother. In real life its not done that way, but if your a sticker and want it exact here is your tip: when building levels keep in mind your texture sizes and how textures tile. Build your blocks so that they will fit the textures on them exactly, or you leave enough tiled lip on either sides to compensate for walls and other blocks that rest on top.

For our level here, we are instead going to take a page from Real world construction practices. You divide the room evenly X and Y and that is your start point for your tiles (in a sense you created an origin point for the room)

[image: image42.png]
This would then allow us to lay down tiles and the edges that meet walls would result in partial tiles but they would be = in size across from each other. (the particle tiles along the wall at +X would be same size as those along the wall at –X. Same for + and - Y)

Since we cannot draw our lines, we will instead ‘eyeball’ out making the partial tiles on the X and Y so they are aprox the same size. Turns out I don’t need any offset after eyeballing the sizes around the walls.

Ends up I don’t need to do any for the hall or Room 2 either. So off to Room 3 and 4 to do the carpet.

With really not that much of a pattern to this texture (and how carpets usually are) we can get away with just scaling this down as well. 0.2 was a bit too compressed, I opted for 0.5 scaling (in fact most my experience with FP view games a 0.5 scale usually does well on most textures).

Back to room 1 , we will work ceilings and walls to finish the entire level from here. Walls in room 1 are fine since they are solidish looking, but the ceiling could be scaled down. 0.5 worked fine for that. If you are never sure if what you do is enough, or too much for adjustments. Just save it and run your level and look at it in the engine. By our rule of thumb, we are keeping everything simple so our builds are fast so we can do allot of checking of how things look. Carried the .05 to ceiling over to the hallway and left its walls alone as well.

Room2. The Wood panels I also felt a 0.5 worked well which I carried around to room 3 and 4 The ceilings I didn’t touch.

One other surface adjustment we can touch on, angle. This allows you to rotate a texture on the surface. All these setting so far will take either positive or negative values and eventually wrap around (if you set a texture to an angle of 350, it would be same if you did a –10 angle). All in all I think we are done adjusting texture save and offsets for this level.

Details:

Details allow us to add more depth and variety to what would otherwise be bare, boxy rooms. This is really where you take the first steps to get away from level building as a static repeat of placing blocks and textures and turning it into artwork. Our room outline descriptions become more important from this point on to set tone and mood to each area.

Room 1 entrance. Ascetically pleasing and impresionative to people entering, but serves little purpose then a showplace. Shouldn’t be dull or drab/plain looking (as it is now) but not so much as to draw attention away from any items on display. In modern construction in rooms with tile its typically done to place a trim board (some call it a ‘mop board’) around where floor meets wall to offset the transition and take eyes off the smaller floor tiles along the edges. To do this we will make thin blocks around 2 quants think and 4 quants high. I found the metalrust texture worked good for my ‘mop boards’ I just made one, moved it into place, textured it then (VERY important) open up properties on that block, select properties tab, then check the Detail checkbox. A detail block is handled differently in the build process then a normal block is. It is in a sense, transparent. The engine when building sees through it reducing some of the calculations done to it vs. what is carried out on normal blocks. VERY important also, NEVER use detail flag on a block that looks beyond it is another room/area, or WORSE beyond it is the infinite level space. Detail blocks should ONLY be used in rooms where they already have defined SOLID texture walls that are used to set the confines of what is viewable.

This is why we use just a BASIC structure of floor, walls ceiling. These basics confine the viewing area of each room/location. Detail blocks allow us to turn these simple areas into complex/detailed looking environments without using solid blocks for those details which just add to the time to calculate and build a level. Detail blocks do take SOME build time but nothing near a normal solid block.

[image: image43.png]
After making the one detail block, I just kept duplicating it and ran around the rest of the floor/wall transitions in room 1 and 2 and the hallway.

[image: image44.png]
Go ahead and build a small display case on the left side with a low overhang above it with a hollowed out area for a spotlight to shine down on the case. Creating the frame for the glass but we will add the glass later. Then turn it 45 degrees and set it out from the corner, by rotating it we can offset the blockieness of the room with some other angles in the room. We could build it as a model or map entity but the lighting won’t be the same, more important that our level lighting will be effected by our structure. Be sure ALL the blocks you use in this display case are flagged to detail.

[image: image45.png]
For the rotating, default the WED rotate is set to 5 degrees, before rotating the display case, open the WED preferences and set rotate snap to 45. After duplicating it and place the dup. in the other left corner, we got a nice open space in the middle of the wall to place something else, like a picture.

[image: image46.png]
after rotating it, be sure to reset the preference rotate snap back to 5.

When you run your level you may notice something:

[image: image47.png]
the corners on these small blocks seem to get pinched. When the engine does a build on the level, the basis of its calculations is surfaces aligned to the levels axis directions. When a very small surface is encountered (usually under 3x3 quants) you will see these such messages during the build:

[image: image48.png]
This is basically because the surfaces are too small and they intersect (or touch) the surface of a much larger surface area or 2 or more of these very small surfaces are touching. If these very small surfaces are Exactly aligned on a level axis it doesn’t pose much of any problem, but if they are NOT aligned to the axis the build has to compensate for the lack of surface area and it will actually add to the surface area by moving an edge of the block during the build (it’s one of the drawbacks to BSP level building).

Common build error messages can appear with blocks with such small size, portal alignment error, misaligned portal, or miss placed vertex. We can fix this by either making sure such surfaces are never off alignment to the level axis or by increase its size to 3 quants a side. In this case I will just increase the small surfaces by a quant because we really want the angle to offset the box look of the room.

[image: image49.png]
Map entity:

For the glass I build a new block to fit inside the frame where the frame has a small lip (like the glass is set inside the frame) and the bottom I extend below the display pedestal surface (don’t need glass on the bottom of the display).

[image: image50.png]
I then edit -> CUT this block out of the level. Save this level, open and save a new level in the same folder called: glass1. I paste the block into this level and align it to the level origin. Add the standard wad and apply the glas2 texture set to 0.5 scaleX 0.5 scaleY.

[image: image51.png]
I save this level. Click build and in the build window I select the Map Entity button.

[image: image52.png]
Now reopen our game Tllevel1. Load the map entity glass1 into the level and align it back into our display case. Right click it and open its properties and select the transparent flag.

[image: image53.png]
Save and build the level (BE SURE you reselect Build Level button in build as it will still be on Map Entity from our last level) and run it.

[image: image54.png]
Insert another glass1 into the level for the other displaycase. If it’s not transparent enough, we can adjust that easy with script. Map Entities can be given script actions just like models. By default, the transparent flag in WED sets the entity to 50% transparent. Lets make a short script to make it at 75% transparent. (or only 25% visible.

We need an action script for this:

Action display_glass

{

}

the parameter that effects how transparent something is called ALPHA. An ALPHA of 100 is fully visible, where an ALPHA of 0 is totally transparent.

We also need to indicate via script that the entity is transparent. Even though we set the flag on it in WED, soon as we add a script that flag no longer is recognized. We need to flag it by script. The transparent flag is called… TRANSPARENT. We can turn this transparent on and off by simply setting its value:

My.transparent = on;

So our action would look like this:

action display_glass

{

my.alpha = 25;

my.transparent = on;

}

Just add this in between the variable declaration lines and the player_move action

Apply this action to the glass1 map entity, Save, build and run the level:

[image: image55.png]
Get the 2nd display case up the same way, use the same script if you want so the glass has the same transparency.

We need a larger display case on the right side of the room. This one we want its top surface angled towards the center of the room (I’m sure you seen these type of displays in museum and historical sites you may have visited).

We want these legs, like a table. For the flat block we can lay the shape down, then select then ‘edge move’ and move the back top edge of the top surface so we make our tilted bed.

[image: image56.png]
We can now create our framework for the glass then an overhead light like we did with the other displays and a new map entity to fit in the glass display (called mine glass2) and we will give it the same action as the other glass entities.

[image: image57.png]
I left the entrance wall blank, not even a mop board. We will add a door later but we will cover making doors in the next level, then come back to this room. The rest of this room is lighting and placing a couple models and mabey a picture or 2 (sprite or model).

Hallway: not much to do here, but its boxy, lets break up the box shape by adding an arch to each side. I’ll show you an easy way to make an arch. Create a block on the Room 1 side to fill in the hallway opening.

[image: image58.png]
Now, move this block off to one side away from our rooms. Add a primitive -> cylinder. More faces to the cylinder the more blocks we are going to have in our arch, more curved we can get it but at a cost or more surfaces. I do a little bit of edge and face moves to get the curve of the arch more of what I want, Also making sure that the cylinder sides extend out past the sides of the block.

[image: image59.png]
Normally I recommend NOT to use CGS subtract but it works for doing this. Select the cylinder, and select CGS subtract from the edit menu. What is left over will be grouped. So select the remains and do Object -> Group -> ungroup. Now just delete extraneous left over chunks.

[image: image60.png]
Grab all the remaining blocks, move them back to the hallway. Set their detail flag, and texture all its surfaces with the bright02 texture. Duplicate the arch then and move the duplicate to the other end of the hallway opening. If we don’t texture all its surfaces, during runtime we will notice tiny little gaps and seems between the blocks where none textured surfaces meet textured ones. (you occasionally still will notice these seems but not as much).

[image: image61.png]
This is not the BEST way to build an arch, but it is a fair way to do it if the arch isn’t meant to be too complex or a major feature to your level. I’ll show you a better way in TLlevel2.

Before we leave Room 1 and the hallway lets finish construction of one important thing. If this was your building (not a game room but a real room) where would you place lights? There would be some semblance of where fixtures are from where the light comes from to light the room and hallway. We have light fixtures over our display cases, but we need normal light fixtures as well. For room 1 I will make a square shape fixture that rings the room, the hallway will be a single fixture on the ceiling.

[image: image62.png]
Looks good, lets move on to Room 2.

We are going to do 3 things here in this room: create the stairs, make a receptionist desk/counter, and we are going to add more depth and light fixtures to this room.

The stairs that I have in mind are ‘floating’ grill like steps supported by a single central metal bar down the middle. Metal handrail going down the steps as well.

Receptionist desk I am thinking of a backwards L shape of mixed textures (marble with wood trim). It will be on the left side of the room, leaving enough space along the wall nearest room 1 and the left wall to make a walk around the desk to the back space. Desk should be 2 levels a sit down desk with a customer counter top above it. (about waist high for the table top and to the bottom of the rib cage height for the customer counter part of the desk.).

Ceiling texture has a corrugated look. We are going to add small detail strips to make more 3D depth to the corrugation.

I’m going to build the desk and do the ceiling since we know how we want it, go ahead and do the same see how your work comes out before looking at what I did. May want to move the cbabe model up so you can get an idea for the height of the desk.

[image: image63.png]
The ceiling was really made up of 2 different wide highlighted ridges. Repeated a pattern of 1 wide 2 narrow. Finished it off by putting a trim strip all the way around the edges, thin ones along the left and right walls.

The desk was pretty easy, build 2 wood legs and marble block between them then edged with 2 wood trim blocks. Duplicated it and face moved each part to make the longer side. Duped the original part again twice to make the end caps to the desk, then duped one leg and face moved the top down to be the inner desk support in the desk dog leg turn part. One more dup. rotated 45 degrees. Lined it up on one leg then face moved each part to a corresponding location on the next leg to make the dog leg turn of the desk. Built the desk surface first with 3 blocks, one I have to do an edge move to make it into a triangle shape for the dog leg. Top counter I did the same thing but made the corner of the dogleg a trapezoid shape.

[image: image64.png]
Overall so far looks good. Let’s tackle the stairs.

Stairs at first seem simple and straightforward enough, some small blocks intermittently spaced going up and forward to form steps from a lower floor height to an upper floor height. Problem that most starting with 3D game level building is either make the height between each step too high, the step to narrow (or too long). End result is usually the models can’t go up the stairs or you need allot of space to lay out all the steps. So a rule of thumb, steps should be scaled to the player model (which the player model is the bases for EVERY scale of the level from textures to size of objects and size of badguys). Lets look at how we can determine the size of a step for our cbabe model.

[image: image65.png]
2 parts to steps, Tread and Riser. The tread, of course, is where you tread or step. Should be at least 4 quants thick, the depth of the tread 1 ¼ to 1 1/3 the length of the models foot, and the width aprox 2 x as the model is wide. The Riser, the distance from the top of one step to the top of the next, shouldn’t be any further than from the bottom of the foot to aprox half ways between the ankle and center of the shin. You may have to adjust this height to less if you didn’t plan for it when laying out the distance from one floor to the next in your level. We need to be most concerned about Riser height. This makes or breaks a stairs if an entity can go up them. We will try aprox 8 quants Riser, if you look at the pic above that’s about the distance between cbabe’s bottom of her feet to the half ways point between ankle and center of her shin.

How I textured the step is that, instead of making the block then trying to adjust scale and offset on each face. I applied the texture on the block, then moved the block around in the level to get a feel of how much I needed to scale, based on how the level naturally tiles. I stuck to getting scaleX right first, adjust in the WAD and reapply to the block, move block along X axis a bit to judge how it fits. Rinse, repeat till I got the scaleX fit. Then did the same with scaleY moving the block on the Y axis and adjusting and reply texture as needed. Then I finished off by manual adjusting the Z axis aligned surfaces one surface at a time.

[image: image66.png]
Now I got it as I like. I open properties on the block, set its detail flag and then texture lock. Then move it to where I will build my stairs.

I start at making the top of the step flush with Room3 Floor, pulling it 4 quants away from the ledge itself and 8 quants away from the wall. Dup. this tread. Then move the dup. so its top surface is 8 quants lower than the top of the first tread. Then line up the back surface of the dup. tread is even with the front surface of the first tread. I repeat this until my the top surface of my latest duped tread is 8 quants from the floor surface (or less).

[image: image67.png]
If you got excited and said “great! I can go up stairs now in my level!” Built and ran the level you will notice you couldn’t go up the stairs! Did you do something wrong or did I give you bad instructions on the steps? I doubt it for the first, and no for the second. The problem is in our movement script. Not to worry though we will fix that before we get done with this level.

For now lets finish building the stairs. Its floating in space, nothing holding up our steps. We will use a little trim to make a support down the middle under the steps to make it look like the support. We will also want a handrail up the left side of the stairs and down the ledge face of the carpet of room 3. Go ahead and try that. I’ll build mine and then compare yours with what I did.

[image: image68.png]
I started with the brace under the steps. I duplicated a trim piece along the wall near the stairs, centered it along the length of the stairs then used face move to move the 2 yellow circled faces. First one I moved so its top was even with the top surface of the Room3 floor. I then moved the other circled face to where it met the floor under the last step. Turned out to fit exactly. (well, I planned it in advanced, remember when we started I told you to build the ledge wall 80 quants from top of floor to top of floor? ()

I then duped this brace and used it as my handrail along the stairs. I placed it 1 quants inset from the edge of the stairs the got its relative height to how cbabe would reach down and grab a hand rail.. grabbed another trim piece and duped that for the ledge handrail lining that up with my stairs rail. Then I just kept duping trim pieces and resizing to fit for the support poles and the small gap between the step handrail and ledge handrail. Finished up by checking to be sure all was set to detail flag, then I retexture the rails.

[image: image69.png]
Looks good overall, now we just need light fixtures in this room to finish off physical construction.

In an office such as this in real life, we would want most lights around the desk/counter and the stairs.

I went a bit by the wider ridge surfaces we have in our ceiling when we gave it more detail depth to place and size some lights.

[image: image70.png]
I rather like these lights so I think they would work well carried over to Room 3 and the other hallways Room 4. The rest of this room can be finished out with a few details like a picture or 2 on the walls. Some office equipment models on the counter/desk. Mabey a corner potted plant or 2.

Room 3 will be simple compared to the others as we already have the handrail done. This room is a waiting/break room. What would you find in such a room? Chairs, Soda machine/coffee maker, coffee table with mabey some magazines. All of these can be found or made easier with models. So basically we are done in this room except place some light fixtures. I think 4 duped ones from room 3 running lengthwise left to right will be more than enough. (
Room 4 hallways (almost done with building work!) We mentioned this is a hallway, may have some pictures lining the walls. Here I think we will run some trim along the walls to cut out the blandness a bit and separate the picture display half area of the wall from the bottom half of the wall. We will also place a couple Room 2 lights down this hallways.

 [image: image71.png]
As you can see it breaks up the lower half of the wall where our pictures will be above this trim work. I also decided to add a small trim board around the edges of Room 3 and 4 where the walls meet the ceiling.

The rest of the work for these 2 rooms is really just models and pictures and for the hallway to make an image to create a runner carpet down the middle of it to flesh it out.

The key here too this detail work is do enough to flesh out the rooms without making everything cluttered. We should get a good idea what each area is for by how it looks and the transition from one room/area to the next should make sense. Would having an entrance room then you have to walk through a bathroom to get to the offices or laboratories make sense? I don’t think it would, neither would most players.

We are now going to add one more Map Entity before we leave construction and move on to lighting..

On our hand drawn map in room 4 we had a dotted line that said Level Change. This is where our player will change from TLlevel1 to TLlevel2. Go left 64 quants from the level origin in Room 4 and add a small block. Adjust this block so its 8 quants wide and fits inside the hallway.

[image: image72.png]
Cut the block from the level. Save. Now open a new level. Paste the block in, apply the default texture (new level the default texture is automatically set to shaded but that don’t matter, long as the texture isn’t set to NONE). Save this level as ‘zoneblock’ then build as a map entity.

Reopen your TLlevel1 level and add this map entity to the level. Reposition it back to 64 quants left of the origin and center it in the hallway. Right click the map entity and select properties and then properties tab in the window. Check mark ‘invisible’ flag. Save and build the level. If you move your cbabe model up to Room 3 floor and now walk down the hallway, you will suddenly stop past the halfway point. You hit this invisible wall. This will later be given a script action to allow the player to change levels.

If you moved the cbabe model, move it back to its start location in room 1. We are going to start on lighting and want to beable to look at our work room by room, starting with room1.

Lighting:
With 3DGS we have 2 forms of lighting, static lighting and dynamic lighting. The difference is simply this, static lighting is calculated and processed during your level build and does not change when running your game. You have virtually an unlimited number of static lights to work with. Dynamic lighting is handled during the running of your game so has direct effect while the level runs. Dynamic lights are limited to 8 maximum running at any given time (including the sun which is a dynamic light). (This is expected to change in the near future. Check the forecast page on the 3DGS site for more info).

In this part of the tutorial we will cover basics of static lighting and how it effects your level. Also on how you can adjust textured surfaces to manipulate how light interacts with it.

Static lights in 3DGS have 3 primary parameters you need to set. Color, Range, and location.

Color: Light color is determined by setting a mix of setting of 3 basic colors Red, Green and Blue. Each of these have a number value range of 0 (no color at all) to 255 (pure full color of that particular color). Notice this isn’t the 3 primary colors you learn about in art and science (Red, Yellow, Blue which blue and yellow mixed make green). The reason being is how a cathode ray video display works (which really isn’t important on the how and why), just know video displays, and thus video cards are based on Red, Green, Blue mixing (also known as RGB displays/monitors). To create a pure black color, you would set RGB to 0/0/0, to make pure white you would set RGB to 255/255/255. To get a yellow you reverse the process of Yellow and blue to make green. You add Red to Green to get yellow (255/255/0 RGB). Fortunately, when setting light properties, you can already select from a color pallet for colors or even mix your own color visually vs. knowing the numbers. The ones I list above (for black, white and yellow) are only ones you need to keep to the back of your mind.

Range: Static lights in 3DGS all have a circular radius range with the light being in the center of that circle. Where the center point is the greatest intensity of the light for the lights color shade and the circle displayed for its range is the furthest any light from that light will visibly effect a surface (at its faintest intensity) This range is measured in quants.

[image: image73.png]
Location: this is just set by moving the light around in WED with the mouse, like anything else. But with lights, location, X/Y/ and Z, is a critical factor on how that light effects our level.

Placing a light:

The location you place a light is important, in level design you have to be thinking about lighting even when you’re first thinking up the level and how it will look. Before you even place your first blocks down. A single block in a bad spot can cause lighting headaches and its troublesome to go back and redo rooms or entire levels because you can’t get lighting right.

Right click a 2D window and select ‘add light’ or from menu ‘Objects -> add light’. You will see a little light bulb in the map with a yellow circle radius around it like in the picture above. (for some reason the light range circle never shows in my XY 2D window). Lets move this first light right under one of our textured light fixtures in room 1. You don’t have to put it right under a light texture, but for now we will do that. Right click the light and select properties. Default for a new light is 128/128/128 RGB with 300 range. Leave the color for now, but reduce the range to 150.

First keynote on lighting: Just like in real life that visible light won’t pass through a solid object like a wall, same here. Light from a static light will not go through a surface with a non-transparent texture. If you set a light bulb into a wall or surface, its light won’t effect the level.

Second note. Once you add a static light to a level, any areas without a light will be, of course, be absent of any light sources, so it will be dark.

Save our level with the one light, build and run. What you should see is something like this:

[image: image74.png]
The light intensity decreases along the walls and floor as it gets further way from the source of the light. Outside the range of the light its pitch black. Let’s increase the lightrange to 200. Save, build but these times instead of build level, select Update lights button. We didn’t change anything but just the light so we don’t need to rebuild all the geometry.

You should notice with adding a light, the build time significantly increases as build now has to calculate for lights and the level shadowmap. Shadowmap is the calculated intensity of light on the level surfaces. It can be effect at runtime via dynamic lights and also can be read via script if you wanted to create something that happens or doesn’t happened based on the nearby intensity of light (example: if you wanted a player that was in the shadows of a room not be visible to badguys).

[image: image75.png]
By increasing our light range we cast more light out and into the corner (we can now see shadows cast by our display case). Lets keep this Range for now, and alter the lights color to a red (RGB 128/0/0), save and build (Updating Lights).

[image: image76.png]
We can see how much a color can effect the overall look of a texture by changing the color of the light that hits it. Lets set our light back to 128/128/128 RGB, and give it 100 range and now lets set it up inside the hollowed out space above our display case.

[image: image77.png]
[image: image78.png]
As you can see, by using blocks we can restrict/block light to give it more direction specific lighting directions. That light looks pretty good, lets leave that one there, duplicate it and put the dup. in the other display case light hollow spot. Let’s also add 3 to our other display case hollowed out overhead light.

Light note: From experience, its best to do your room general lighting with a gray scale light (where RBG settings are equal like 128/128/128) to add color tone to the light you can then add extra colored lights to diffuse the whiteness with a tint of color.

Light note: Typically we use 3 forms of electric light, Standard bulb, Fluorescent, and Halogen. Standard bulbs tend to have a slight yellow hue to them based on Wattage rating. Higher the watts, the less yellow it its light. Yellow colors give a softer lighting mood. Fluorescent lights tend to have a blue tint to them, blue tints give a sense of utilitarian or sterile environments. Halogen gives off a more white light that’s very intense with a slight blue tint at its furthest illumination range. Best used for focusing intense illumination above the normal lighting of a room in specific locations.

[image: image79.png]
Lets now place lights around our ceiling light fixture, using 128/128/128 RGB at 150 range.

Light Note: A light which its light range never touches any surface at all is a wasted light. Since the light has no effect on surface lighting and shadowmap, the light effectively lights up nothing yet the build has to still calculate for it cutting into build time. Be sure your lights have something to light (
As you may notice, with every light our build time is seriously increasing and we are still only in the first room. This shows how it’s important to get all your block geometry building smoothly, quickly, and error free ahead of time. To rebuild bad blocks with errors and calculate lighting and shadows in the same build can take you a VERY long time to do.

[image: image80.png]
The light is a little intense on the ceiling in the middle but we will adjust that later, what we need most is increase the intensity of our display case lights. We will also add a few blue lights (0/0/50 RBG) to get some diffused blue into the room. Especially the 2 corners near the bigger display case and in our 2 smaller cases (for the small cases we will give the blue lights larger ranges so the blue extends beyond the gray light). We will also add l00/100/100 RBG 100 range lights in Rooms 3 and 4 at this time. 2 per fixture.

Then some 128/128/128 range 150 lights in Room2, then some yellow 50/50/0 range lights in rooms 2,3 and 4 but instead of near the light fixtures, we will place these down lower, half ways between the floor and ceiling.

Because build takes much longer now, we try to note all lights that need any tweaks for the entire level so lets look at each room after this build and not what to change.

Also at this point we are going to start covering all those extra property settings to our surface textures to start tweaking each surface even further.

[image: image81.png]
We learned about X offset, Y offset, angle, X scale, Y scale, and None Flag.

Ambient: Ambient is how much the texture lights itself, the more ambient the brighter the texture will be to where you can cause it to ‘white out’. A negative value will darken the texture to where it with very low values it can be made totally black.

Albedo: This is how much the level light effects the texture surface. Higher the albedo the more sensitive to the level light it will be. A low albedo will make the texture none responsive to the level lighting Albedo settings of 1,2,3 and 4 is reserved to have the textured surface respond to level FOG settings (which we will cover in a moment)

Shaded: (default setting of textures) Shaded flag allows the surface to be effected by the subtle intensities of light causing shading and shadows.

Flat: Flat makes the texture non responsive to level light, as if the light(s) weren’t in the level. Ideal for use on very large surfaces because the engine has a problem with generating shadowmaps for VERY large single surfaces.

Sky: Sky is used on multi-layered sky textures for skyboxs

Turbulence: Turbulence is used to give the texture a swirling/twisting motion to simulate liquids. Normally used for water/lava/slim like blocks.

Smooth: Commercial and Pro editions only: causes the shadowmap of the surface to smooth its light to dark transitions. Very useful for cutting down sharp light/shaded contrasts and shading pixelization.

Mirror: Pro edition only. Makes a horizontal or vertical surface take on a mirrored effect (like a highly waxed and buffed tile floor) as it gives it a reflective quality. The intensity of the reflection is adjusted by the surfaces albedo setting.

[image: image82.png]
Under File -> Map Properties select the sun tab. Here we can set the color of the level sunlight, the elevation(height) of the sun. (0 elevation is even with the Z=0 elevation of the level, 90 the sun is straight overhead. Azimuth (the suns angle in relationship to the origin) azimuth uses the same angle as an entity pan angle. 0/360 being on the +X axis then as the angle increases the sun rotates counter clockwise around the level origin (90 degrees would be on the +Y axis, 180 would be on the negative X axis and so forth). For this level we don’t need the sun, we will deal with that in another level.

Ambient: This is the RGB of an overall light to the level. Its like if you set a light bulb but it has an infinite range. Very good for setting an overall light level or have everything in the level give a sense of a color tone. You can use level Ambient setting to help cut down sharp contrasts in light and shadow areas or keep a level from being pitch black. We will be using level Ambience in our level.

Fog 1, Fog 2, Fog 3, Fog 4 these allow us to set 4 RGB values for fog. Fogs can be handled several ways:

1. Overall in a level by setting script commands for enabling fog in the camera view (which we will do in another level)

2. By applying a fog color directly to a surface to have that surface effected by a fog ‘effect’ (at far distances the surface bland and even fades out, then as you approach that surface it ‘fades in’ and becomes more clear (same effect as in real life when you walk through a thick fog and come up on a wall of a building,). A fog can also be set to a passable flagged solid map entity to create ‘volumetric fog’. Like if you are swimming your visibility range in water is reduced and has a blue or green (depending if your in fresh or sea water swimming) fogging effect. Or set a similar block inside a room that has lava and having a red/orange fog to the passable solid map entity can give you a sense of ‘heat glow’ off the lava in the room.

We will be using some texture fog in this level.

I took various screenshots around the level after this last build. Ill point out some typical problems many learning how to work with level building run into with lights and how to fix them along with adjusting surfaces to get more tailored light effect to surfaces.

First we want a bit smoother light/shadowing to the level but not TOO much. We don’t want anything pitch black. So we are going to give our level a little Level Ambience. From experience I tend to use 5/5/5 to 15/15/15 RGB at most. For this level we will use 8/8/8. May not seem like any change but it will make a big difference after build.

Big light note: Light on one texture can and usually has a major different effect on another texture. What works good for one light on one texture may make the next look bad. It takes visual assessment and adjustments accordingly to get things right. Was why we paid close attention of what textures that seemed to work together during our surface texturing step. To keep from too stark of contrasting textures so we wouldn’t have to fight lights.

[image: image83.png]
After build (without level ambiance) we get a view like this (I increased camera view arc so we can see more of the rooms in the screenshots) The areas in the Blue circles the light is too intense. This isn’t because of our 128/128/128 rgb light as many would think. This is because of the 0/0/50 blue RGB light we added. Blue light diffused into other colors causes colors to ‘white out’ , also the blues light range is too small (by looking at how small of area it diffused the light.) So if you got a nice light but its just not ‘bright’ enough just add a little blue light to it instead of fiddling with the original light. We change our blue lights to 0/0/15 with a range of 175.

The red circled areas are effected by the same lights, too much on the ceiling not enough on the floor (getting a shadow there). The lights seem good just not in the right location. We need to grab all the lights around our fixture and pull them down, to get the ceiling out of the more intense light range and get the floor more into the lightrange. So I will move them down about 20 quants. Before we move on to the next pic lets start adjusting some surface textures.

By default textures are set to 0 ambient, 50 albedo, and shaded flagged. We will work the ceiling and floor first. Don’t forget these textures carry over to the hallway and the floor into Room2 so we need to make sure that what we do here carries over to those areas else the we get a definite noticeable change as you cross from surface to surface. The floor, it seems a bit drab we want to give it a bit more life with more contrasts between the seams and pits and the highlights on the tiles. How we can do this is reduce its own light and make it more reactive to level light, so we reduce its ambiance and increase its albedo. I think a –35 ambient and a + 65 albedo should do the trick. A negative ambience will darken our texture, a really negative number can make it pitch black if we also turn off albedo.

Ceiling, we can do something similar, it reacts to our level light Ok so we will just reduce its ambience to a –20. The display case bases are a bit dark, we can lighten them up by adding some ambiance to them. + 20 should be enough without making them too bright. The walls we will leave them as-is.

[image: image84.png]
In the blue circle of this shot our lights from the fixture aren’t lighting our display case enough. It is enough light just not intensity. How do we add intensity to a light? Add a light with a little bit of blue? We will copy our blue light from the small display case and move it to this case then dup. it again to have 2 overlaying blue lights. Space them apart evenly over the display, also pull them down a little lower then the lights in the fixture.

The outside surface around the fixture is also a bit too bright in response to our level light. We will grab that one surface and reduce its albedo to 40.

[image: image85.png]
Hallway, we want to adjust the floor and ceiling as we did the in room 1. Floor ambient –35, albedo 65, ceiling –20 ambient. Blue circles, we got an over intense light in the middle, BUT we look at our hallway in the level editor and we got 2 lights. This intensity is in the middle of the hallway but the 2 lights are on either end of the fixture. As Jerry Sienfeld would say “What’s up with that?”. What’s happening is the 2 lights are blasting in a confined space for calculations and having a similar effect as adding too blue in a second light. So where our 2 lights ranges overlap we are creating a more intense light effect. We need instead a more even lighting. We can fix this by reducing each lights range and moving them a bit further apart. We will still have a gap near the floor in the middle of the hall where our light ranges no longer overlap. What we do now is add 2 low RGB setting lights (30/30/30 RGB) about in the middle height of the hall. Then we will adjust the left and right wall textures. Lower both of their albedo to 35 to reduce how much light they are effected by.

Building note: see the gap/sliver in the red circle? This is a clear indicator why we don’t use CGS subtract. Even though the cutting worked fine, it creates blocks with surfaces at very odd angles in relation to the level axis’s. Just like our previous build problem with our display cases. Small surfaces, not aligned to the level axis can generate unexpected (and usually undesired) results. CGS is notorious for such problems, if this had been a floor block surface the player entity would fall through the floor at these gaps, even if you cannot see them, the engine can. CGS is ONLY really any good when ALL cutting surfaces are exactly aligned to the level axis and the result cut is built so all surfaces are aligned to the axis. We will leave this as is as a reminder to use every time we walk past it, build the form with blocks, don’t cut.

[image: image86.png]
On to Room 2. First we need to adjust our floor as we did in Room 1 -35 ambient 65 albedo. In this picture, the ceiling looks ok, there is a problem but we will fix that in the next picture.

Now, as you can see from this picture (and the rest of the following pictures), in the left hand blue circle our yellow diffusion light is too intense (look at the left hand wall area in the blue circle). As we learned, some yellow diffusion will make an area softer/warmer in appearance but this is too much for an office/reception area. This would be more like in a home living room lit with table and wall lamps. So we need to reduce our yellow its at 100/100/0 at 100 range. Lets cut it back to 35/35/0 in all yellow lights but up the range to 150 for a bit more dispersal. The other blue circle has a obvious bit of yellow on the desk, like it was spray painted on the bottom edge of the marble there. Just another indication we got too much yellow in our light and not enough dispersal range.

The wall textures a bit bland like our floor, we want to try to pull the texture depths out a bit more so we can use the same setting as we did the floor, -35 ambient 65 albedo. In fact, we can carry this around to all the rest of the walls that are wood, BUT leave the Room 4 hallway for now, but do Room 2 and 3 Wood walls.

The desk is also a bit dark, like our display cases we want that marble to stand out a bit more, so lets add 20 to each surfaces ambient for the marble surfaces. Hopefully you have guessed, since all the surfaces of our desk are textured, we can just adjust the texture in the WAD (to 20 ambient .5 /.5 scales) then select each marble block of the desk and just retexture it that way.

[image: image87.png]
Bottom blue circle show s more of the same, too much yellow. The 2 blue circles on the ceiling are what we are worried about here. Even though we have our lights up near the fixtures the actual light surface textures are shadowed. Definitely not what we are after. We could fight with the light but in the end we would find that the fixture size is so small (with the trim that gives us a hollow out area to the light surface texture itself). We would have to make the fixtures bigger, which then wouldn’t fit our plan to fit them to the ceiling corrugation texture. To fix this we will sect the light surface texture and up their ambient level to 85 to make it light up on its own. All the rest of our light fixtures are like this, so go ahead and fix them all.

[image: image88.png]
The blue circle, just more of the yellow too intense. The red circle, out stairs is too dark, and since it’s made of metal we want it more bright. Here we got 2 options:

1. we can adjust the albedo and ambiance to make it brighter.

2. We can turn it into a map entity, with an entity we can make use of the ‘metal’ to make the surfaces react to light as if made of metal.

A problem though, entities don’t cast shadows from static level lighting, and we definitely want shadows. It’s why we build the stairs as we did with open gaps between steps and empty space under the staircase.

There is a way we can have the best of both worlds and we will do that here.

A lighting Rule: A block textured with the NONE flag set (like our default texture) will still caste a shadow from static lights and level build time sunlight calculations. So if we built a block and textured it with a NONE flagged texture and set it just a little off the floor (just a couple quants) the block will caste a shadow. We cannot walk through this block though unless we also set its ‘Passable’ flag in order to walk through it. So what we do is we select all the blocks to the stairs and handrail and copy them. Open a new level. Paste the copied stairs and handrail into the new level and load the standard wad so the textures come back onto the stairs. Save the level as ‘stairs’. Check to be sure your textures didn’t shift around on the steps, if so re adjust them. Save and build as a map entity.

Reopen our Tllevel1. Select all the blocks to our stairs and handrail again and texture the entire thing with the default texture and set all the blocks passable flag. Now add the map entity ‘stairs’ and move it so it matches up exactly where our block stairs are. Open the ‘stairs’ properties, check the metal flag then give the stairs and ambience of 35 and albedo of 65.

If you wanted to, you could do the same with the display case glass frames as well in Room 1.

 [image: image89.png]
Just more views of the too much yellow intensity, can see the problem on the desk much closer. When reviewing your level lighting. Need to watch for the obvious and the not so obvious because the not so obvious can the cause of other light problems.

[image: image90.png]
Looking from room 3 back to room 2. Red circles show again our yellow problem, and the blue circle shows better our light texture/shadowing problem on the light fixture. Look at the archway we can see even from here the problems that build has from working with them odd blocks done with a CGS cut.

[image: image91.png]
Room 3. Red circles, more and better view of the problem with our overhead light fixtures we addressed in room 2. Blue circles show the continuing problem with too intense of yellow light. The yellow circle shows a gap in our light range overlapping. Walls and floor are left in the dark. We can add a small low intense light to cut this down, and our Level Ambience setting will cut some of this down too. We will add a small light of about 30/30/0 range 100 right in this location.

[image: image92.png]
Again down the hall into room 4, the light missing from the entrance here and too much yellow problem again. Red circle, of course, the light fixture problem.

[image: image93.png]
Yellow circles, the lights problem. Red circles, lack of light range overlapping, need a bit more range on our lights here. Blue, the yellow intensity problem.

After fixing the lights and light fixtures here we are going to do one more adding thing to this area that will be important. Since room 4 (this hallway) is where we will do a level change, (to TLlevel2) we want to give a hint fogging to this area to give the player the sense they are moving into a new location. Fog will also help in reducing rendering demands, increasing engine speed and so let us get to level loading faster.

The real trick to level transitions is 2 things. Amount of data that has to be loaded in a level change, and how much has to be calculated in the first rendering once the new level is loaded. By reducing the amount of rendering demand at the level change and then again after level change we have less demand on the CPU for doing that rendering calculations (i.e. we are doing everything we can to get a high frame rate just before and after level change). So we restrict how much is visible at the level change point, such as an ‘S’ shaped hallway, or an elevator shaft, or a very small room. We repeat the tight restricted area of view at the load in point of the next level it has less to render (so fast frame rate). By adding a fog effect to the textures at level change point we can cut down details rendering (plus it looks cool ().

If you optimize your level change locations well enough you can almost get the game to flow as you bairly notice a level load at all. Great example of this, the Harry Potter 3D games (one for each movie) if you every play these they have occasional save points in the game that you touch. These save points are also level load points. Each area is build so if strung together it looks like one BIG huge level but its really many small levels and by hitting save points it saves your game AND loads each level transition.

So, to add out texture fog, first we need to set a fog color. I think a very faint yellowish (less then our diffuse color) would work well. Open File -> Map Properties, Fog Tab. Under Fog 1, set the RGB to 20/20/5. Now we need to select each surface down the rest of this hallway (walls, floors, ceiling, trim, fixtures) and set each surfaces Albedo to a value of 1 (for Fog 1). Our wood textured walls we will also set ambience to –25.

Save your level and build. Go take a break while it builds, it may take a bit for the light calculations.

Why do the light calculations take so long in a build? Well 2 major reasons, number of lights and number of surfaces within the light range. We could trim some lights, and we could replace detail works with map entities and models (which remember, aren’t effected by static lights). It becomes a trade off, more build time for better lighting and shadows, vs. faster build time with less light and shadows defining our level appearance. Also, the more entities we have in our level the more it effects the game performance during run time because rendering entities is handled in the runtime engine. Sprites, models, map entities, hightmaps, particles and dynamic lights are all rendered runtime. So that’s also a trade off, figuring what elements are better done as blocks or entities. Is it better to spend more time building to get better runtime performance, or fast build but slow level runtime performance?

Clutter. Like I said before in stories and game design, clutter can have adverse effect on your game. How much is enough and how much is TOO much is what you have to figure out for balance to your game and level maps.

After this build, the lighting looked better, but needs some ‘tweaking’. By tweaking I mean raise/lower RGB values by 5 - 20 or so, range of around +/-25. Here you need to keep at the visually view and assess what each light is doing to your surfaces and adjust accordingly. Lighting as your seeing is allot of fidgeting, but without spending time doing it, can make or break our game visually. Being the first level the player will see when starting the game, its even more important to get it how you want it. ‘First impressions are the lasting impressions’, as the saying goes.

Since we will do several more builds here as we ‘tweak’ I decided finish out our entrance wall we left untouched. Don’t worry, this will go fast, as we already have most of it built.

[image: image94.png]
First I deleted our untouched entrance wall, selected the archway wall parts, trim and all and duplicated it. Rotated the duplicate 180 degrees and moved it into the space we just cleared out. I then did the same with the hallway, selecting everything, duplicate, rotate 180 degrees and move into the opening in our entrance wall. Finished the blocks off with creating a new block to close off the end of our new hallway and default textured it. I then zoomed in and adjusted all the trim to fit (so no overlaps) and I deleted both archways from this hallway. I then took our new block and textured its inside visible surface with the gate1 texture, scaled and offset it to fit (making sure the yellow/black slashes on the bottom of the texture weren’t visible when I finished). Added another map entity ‘zoneblock’ in this hallway 60 quants from our ‘fake’ doorway (flagged to invisible) then moved our cbabe model into this hallway so she’s on the room1 side of this new level change point.

Now I looked over my visuals of this last level build, tweaking the lights that need it. Added 2 new lights (one in each corner near our big display case) because these corners were too dark) both with RGB 20/20/20, just enough o cut some of the darkness out. Also adjusted our fog1 and level ambience (lowered RGB values of both a bit). We can finish this level after a few more light tweaking builds. Once I am happy with how all blocks, textures and lighting looks I do a final full ‘Build Level’.

[image: image95.png]
I make sure in the build window I set Visibility Calculations and Light Calculations sliders all the way to the right. This will take MUCH longer to build so, save for like just before you goto bed or off to work. The end result is it does allot more calculations to get a better overall look to the level as well the extra pre calculations in the build saves rendering time during Run time. So the level will have a better frame rate.

Adding static entities:

Now we add some entities to our level to finish fleshing it out. Plants, cabinets, furniture, pictures and so forth. We can also add entities we will interact with such as badguys, items player can pick up etc. Assign them scripts as need be, Save then select build, select the Update Entities button then OK to just update entity information. You can keep doing this long as the only things you alter ARE entities. Change a single light, texture, block, sunlight, fog color, or level ambience light and you need to rebuild the level again.

For some entities I went to the Acknex – Unlimited site and downloaded some models (see the Credits section at the end of this tutorial for a full list of what entities and who made them) added some to the level and tweaked their settings such as metal flag and ambiance. Those models that had animated I didn’t want them animated, so I made a dummy action script which would then cause it not to cycle through its animations:

Action dummy_action

{

 wait(1);

}

and I added this to the level script just before the player action

I also needed 3 image sprites (non animated). One, for a scene picture in Room 1. Two, for a company logo sign in Room 2. Three, for the runner carpet down the hallway of Room 3.

[image: image96.png]
(Goes in Room 1)

[image: image97.png]
(Goes in Room 2)

[image: image98.png]
(goes in Room 4)

[image: image99.png]
For all 3 I just measured in WED the quant size for each (i.e. scene picture in Room 1 was 192x64 quants). As we learned 1 quant = 1 pixel, so I just opened up my paint program, made a new image and sized it X and Y to the quant size. Drew my pictures saved them in my folder and added them to the locations I wanted them at aprox. 1 quant away from the wall or floor and flagged them as passable

[image: image100.png]
. Sprites by default will rotate to always face the camera view. To fix that we adjust any of its 3 angles so it’s not aligned to the level axis. An angle of 0.001 won’t be noticeable in runtime but it will keep a sprite from orientating itself to the camera view.

Here are screen shots of the level. I may add a couple more models as I can find a couple I want to add but don’t have yet, but basically this level is done building wise but for some scripting.

[image: image101.png]
[image: image102.png]
[image: image103.png]
[image: image104.png]
[image: image105.png]
[image: image106.png]
[image: image107.png]
[image: image108.png]
[image: image109.png]
Run, Basic Collision, Fall, and Climb stairs:
Before we move on to creating Techno Labs level 2, lets do a little bit of work on our movement script. We learned before how to use the cursor keys to move forwards/backwards and adjust our player entity’s Pan angle. Now we want our entity to run as well and to use its ‘run’ animation.

The engine has a way to make this simple, but to do so, we need to do a minor change to our walking and pan lines of our script. Instead of using the key_cup, key_cud, key_cur, and key_cul we will use an engine vector called ‘key_force’. This vector reads the cursor key presses during runtime, each value of the vector can have a +1 to a –1 value range.

Key_force.x is the ‘right arrow’ that gives a +1 value and ‘left arrow’ that gives a –1 value.

Key_force.y is the ‘up arrow’ that gives a +1 value and ‘down arrow’ that gives a –1 value.

So we would change our script lines like this to swap to key_force

 move_vec[0] = (key_force.y)*4 *time;

 move_vec[1] = (key_comma - key_period) *3 *time;

 player.pan = (-key_force.x)*5 *time;

Notice in the player.pan line I used a negative –key_force.x.. Remember, we needed a right arrow key is negative and a left arrow is positive because the way the pan angle increases in counter clockwise direction. Key_force.x the right is positive and left is negative, so we just preceed it with a negative sign to reverse that.

I also increase the factor rates on all 3 lines by one. (they were 3*time, 2*time, and 4*time respectively) so the character moved a little faster.

Now to make us run, movement wise, we just need to use one instruction: ‘shift_sence’.

Shift_sense stores a value that is the multiplying factor of key_force. Default value is set at 2. So if we held down shift key and pressed the arrow keys at the same time, our key_force would now put out values of +2(up), -2(down), +2(right), and –2(left). Change our shift_sence value to 3 (shift_sence = 3;) and the key_force values would be +3(up), -3(down), +3(right), and –3(left).

So, shift_sence allows us to double, triple and so on, our walking speed just by holding down the shift key. We add out shift_sence line right before our while loop (only need to set it once, not set it every iteration of our loop).

 camera.genius = player;

shift_sense = 2;

while (me != NULL)

{

 move_vec[0] = (key_force.y)*4 *time;

 move_vec[1] = (key_comma - key_period) *3 *time;

 player.pan -= (key_force.x)*5 *time;

Save and run your level. Give it a try moving with and without holding down the shift key.

Now we want to animate our running. We need to visually check to make sure the run animation are right with the speed of our running, but we can’t do that in First Person view, so we need to first disable our camera moving with our entity.

The comment line tag ‘//’ can be used for this, better yet we can use the comment select tags ‘ /* */.’ We place the ‘/*’ where we want to start our commenting and the ‘*/’ to end where our comment is. Our camera control needs to be commented out like this:

 /*

// camera updates

Vec_set (Camera.x,player.x);

camera.z += 27;

camera.pan = player.pan;

temptilt += (key_pgup - key_pgdn)*4*time;

If (key_home) { temptilt = 0; }

if (temptilt > 75)

{

 temptilt = 75;

}

else

{

 if (temptilt < -75)

 {

 temptilt = -75;

 }

}

camera.tilt = 0 + temptilt;

*/

If you forgot to add a camera position to your level, do so now (save and build updating entities).

Running it now we can see our entity walking around, but when we run it still uses the walk animations, we need a check to see if the entity is running and then an animation if its true. How can we tell we are running from walking? That we are moving AND holding the shift key down . By our first if statement:

If (move_vec[0] == 0 && move_vec[1] == 0)

If this is false, we then already know we are moving, our else
In this else we now check to see if the shift is being pressed: key_shift (3DGS has separate key_ for right and left shifts as well if we want to tailor it more, like right shift for run, left shift for something else, BUT shift_sense reads off both)

else

{

// our movement animations will go here

if (key_shift) // either shift key is being pressed
{

}

else // shift key is NOT being pressed so we are walking
{

walk_percent = (walk_percent + sign(move_vec[0])*5*time)%100;

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

}

}

Now we can create a new % variable for run, var run_percent;

Copy our walk animation lines and alter them for the correct info

run_percent = (run_percent + sign(move_vec[0])*5*time)%100; // just changed the word walk to run
ent_animate(player,"run",run_percent,ANM_CYCLE); // changed “walk” to “run” and changed walk_percent to run_percent.

Now just plug this inside our { } of the if(shift_key), and move the var run_percent up to where our other variables are located at the top of the script.

Save and run and watch the run animations closely see if the speed factor needs tweaking. The key’s effects to look for are:

Does the entity look like its slipping/skidding on ice as it steps forward (i.e. steps forward and as the foot hits the ground, doesn’t stay put but slides forward). This is a result that the speed factor is too fast or animation rate (percent) is too slow

Does the entity look to ‘moon walk’ as moves forwards? (like a car that you step on the break and gas at the same time, the tires spin but car doesn’t move) Speed factor is too low or animations are too fast.

I’m sure some industrious person could work out a math formula based on distance to move vs number of animation frames for an animation. But the standard way is ‘eye ball’ it till it looks good.

For now it looks ok. Cbabe has a little bit of an odd looking run but that’s OK (we can’t see her anyways when we are in First person view. We could even get away without an animated model at all in a FPS, just a rectangle box would work, but then you would never learn the basics of all these instructions in our script (
You might have noticed as we bump into things like walls the player becomes stuck, or hung up, and to move we have to back away from the wall. This is because so far we are not using any collision detection. Collision detection is basicly when one item hits another how each reacts to that collision. The simplest form of that in the engine is run into something solid, you stop. We want a bit more than that, like when we encounter an item set to passable, we want to walk through it, when we hit a wall we want to beable to ‘slide’ along the wall (like in other FPS we have played in the past). We also want it so when we collide with specific objects or surfaces we can have a special event to occur (like our planned change level ‘zoneblock’. Collide with the block and we change to a new level).

The engine has this basic collision system built in. We can adjust how our collisions are handled by a parameter of ent_move called ‘move_mode’ (if you are using c_move it’s the same thing as ‘mode’ parameter).

Lets look at our options for move_mode that are in the engine:

· IGNORE_YOU - ignores the YOU entity on collision detection.
IGNORE_PASSABLE - ignores all passable blocks and entities.
IGNORE_PASSENTS - ignores passable model and sprite entities.
IGNORE_MAPS - ignores all map entities.
IGNORE_MODELS - ignores all models.
IGNORE_SPRITES - ignores all sprites.
IGNORE_PUSH - moves over all entities with lower push values than my.
ACTIVATE_TRIGGER - enables trigger events during the move.
GLIDE - glides along walls and entities on impact.

We assign these values to move_mode just like assining a number to a variable:

Move_mode = GLIDE;

To combine them to one move mode we add ‘+’ them togeather.

Move_mode = IGNORE_MODELS + GLIDE;

The IGNORE_YOU and IGNORE_PUSH may not be clear to you, so Ill try to give you some basic insitight to them. Later we will be making use of them.

IGNORE_YOU, YOU is an engine predefined pointer that gets values assigned to it based on some other instructions of the engine. One of those instructions is called SCAN. Think of Star Trek, you are captain of the U.S.S. Enterprise. Mr. Spock uses a scanner to detect a Klingon ship near the Enterprise. The Enterprises scanner would target that Klingon ship (assigns the entity, Klingon ship, to the YOU pointer). Now if the Enterprise had a move_mode = IGNORE_YOU, the Enterprise would ignore the Klingon ship if it ran itno it. NOTE: Once the YOU pointer value is set, that value is valid to use UNTILL the next wait or sleep command. After the next wait or sleep is executed YOU can (and most likely will) have a different value. More on YOU later.

IGNORE_PUSH. All entities can be assigned a value called PUSH (i.e. my.PUSH = 5;)

Push lets us set a higherarchy to what is passable and what is not instead of using the passable flag. An entity with a push value higher than another one can pass right though the entity with the lower push value.

Example player entity has a push of 5, a map entity that looks like a wall (but is actualy blocking a hallway beyond it) has a push value of 3. Since the map entity has a lower push value, the player can walk right through it. Setting the ignore_push actualy TURNs push system on (i.e. tells the entity to start ignoring entities with lower push values)

We will cover more with collision in TLlevel2 as we will create very specific situations to let us explore some of the things we can do with collision system. For now we need to get the basics of it rolling for our movement script. We need to ignore things passable flagged, ignore push, ignore the you, we want to activate triggered events for collisions, and we want to slide along walls and objects when impacted (glide)

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH + ACTIVATE_TRIGGER + GLIDE;

In our script the move_mode MUST be set RIGHT before the ent_move instruction, with c_move, mode is right inside the parameters brackets ()

So in our script would look like this:

move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH + ACTIVATE_TRIGGER + GLIDE;

ent_move(move_vec,NULLVECTOR);

If (move_vec[0] == 0 && move_vec[1] == 0)

{

We can remove our ‘/* */’ comment selection out now to turn our First Person camera back on

Save and run the level.

We still can’t climb our stairs (but we are close to having that working now) or fall down. Our movement script only handles our moving in the X and Y directions, but nothing for Z. We need a way to deterime the Z elevation of the floor our character is walking on inorder to keep the entity on the floor.

[image: image110.png]
As you can see, we can walk through the first step but the 2nd step stops us like it was a wall. This is normal and SHOULD be what your looking for, if you cannot walk through the first step, then your stairs ’riser’ hight is too much from the start. If you can walk through the 2nd step then your ‘riser’ hight is too shallow. (go back to stairs in the level building section if you need to refreash on ‘riser’ and ‘tread’)

Now we need our way of determining our ground elevation beneeth us so we can move our Z direction to stay on the floor and go up/down steps.

We will use an instruction called Trace. It does just like it sounds it will ‘trace’ a path or line from one point to another. If it encounters anything along that path it will stop, store the location it hit something in a vector and if what it hit was an entity, the YOU pointer will be given the pointer value of that entity.

Trace looks like this: trace(from vec, to vec); traces from the ‘from vector’ to the ‘to vector’

Trace also returns a value that you can assign a varaible. That value is the distance from the ‘from vec’ to the vec location if it hits something:

Var distance_traced;

Distance_traced = trace(from_vec, to_vec);
Distance_traced: if > then 0 it hit a target, if = 0 then didn’t hit anything, < 0 the from_vec is inside a solid object like a wall or floor (yes its possible to be inside a solid object)

Now trace has a mode parameter too, just like ent_move does which allows us to refine how and what we are tracing for and ignore what we don’t want. Here is a list of the trace mode flags:

ignore_me - ignores the MY entity.
ignore_you - ignores the YOU entity.
ignore_passable - ignores all passable blocks and entities.
ignore_passents - ignores passable model and sprite entities.
ignore_maps - ignores all map entities.
ignore_models - ignores all models.
ignore_sprites - ignores all sprites.
ignore_push - ignores all entities with lower push values than my.
use_box - uses the bounding box (MIN_X, MAX_X etc.) or hull of the MY entity.
activate_shoot - enables EVENT_SHOOT triggering of the hit entity.
activate_sonar - enables event_sonar triggering of the hit entity.
scan_texture - sets tex_name and other parameters from the target surface.

The last 4 are different then you seen from move_mode. We want the use_box for now but the other 3 will be needed later: lets see what they do:

Normal, trace draws a line the width of a quant through its tracing. Use_box let us use the actual bounding box or collision hull of an entity for setting a wide scan line vs a 1 quant wide line. The engines collsion system uses a ‘box’ around an entity for collision detection (the C_ instructions which are new, use instead the actual physycal surfaces of the entity instead of a box system).

[image: image111.png]
In this picture the blue box around the cbabe is its bounding box. Light bulbs have a bounding box but they aren’t considered in collision detection. The yellow boxes show you the lights, light blue is map entities (all these colors can be changed in WED properties). If we did a trace straight out from cbabe with use_box set to its trace_mode instead of a thin line, it would trace a line out the hight and width of the entire box.

By using use_box a trace from an entity starts from the surface area of the box in the direction of the trace vs the actual x/y/z vector.

Activate_shoot and activate_sonar. If you recall in our move_mode for ent_move we had one mode activate_triggers. An entity with that mode set, would recognise a trace hitting it if the trace mode was set with either or both of these modes. Example our cbabe is sending out a trace and within range of the trace is a door. This door is set to respond that if it was hit by a trace from the player entity, the door would then open.

Scan_texture lets you read what the texture name was on the surface of soemthing if the trace hit it.

Example, our cbabe traces to the floor and looks at what textures are under it. If it is stone texture we want a ‘clop’ sound play for walking on stone, if the texture was a gravel, we want want walking to play a ‘crunch’ on gravel sound played … or if the player walked on our texture named ‘ice’, we can alter how the entity moves and animates when walking/running on ice, even make the player slide around.

More on these details later as we will be using trace allot so we will cover it allot. Lets do the basics of a trace for what we need now. So with our stairs problem we need to do our downward calulation to see where our entity should be on the floor/steps. We need 2 vectors for trace, a start and end locations.

Start is easy, player x/y/z.

Ending vector we need a point in the level striaght down from the player, far enough to deal with long drops. Here is how we will do that. Copy our players x/y/z to a temporary vector, then adjust the Z elevation far below what it is currently at, for a temp vector we will use a predefined vector called : temp (temp is like the pointer YOU its only valid till the next wait or sleep so we need to use it right away before any wait.

Vec_set(temp.x, player.x); // copies player x/y/z/ to the temp vector
Temp.z -=4000; // we set the temp vector 4000 quants straight down, below the player entity

We now need to set our trace_mode settings so we know exactly how we are tracing:

Trace_mode = IGNORE_ME+IGNORE_SPRITES+IGNORE_MODELS+USE_BOX; // like move_mode and ent_move, trace_mode line must be RIGHT before the actual trace instruction

We use ignore_me because the trace would detect the entity that the trace is coming from and come back with a result we don’t want. We don’t need to deal with sprites or models either but we do need to deal with map entities (the stairs is a map entity). Then we use use_box, lets look at that picture again from above.

[image: image112.png]
Now we know our player will walk through the first step, but our bounding box would make contact with the step before the actual mesh of the model. Since we are tracing with the use_box mode that means our step will fall within the trace as the bounding box hits the step before the model does.

Then we actual do our trace

Trace(player.x,temp.x); // traces from the player x/y/z to the modified temp x/y/z
Our entity would trace down a line the size her bounding box from her origin and hit the floor which would return a value of that distance. If that distane is outside the box it will be a positive value of the distance from the bottem of the box to the surface hit. If that distance is inside the box it will be a negative value (the distance from the bottem of the box to the surface)

We then set that trace result (distance) to our move_vec.z value (move_vec is the vector we are using for our walk/run strafe for ent_move right?)

Move_vec.z = - trace(player.x,temp.x);

Why negative trace?

[image: image113.png]
So our cbabe, for example, is above the floor here. We start the level and she will trace down and hit the floor. That distance is below the entitys bounding box so it returns a positive distance value from the bottem of the bounding box to the floor. Since that is a positive value and we need to move the entity then Down the Z (in a negative) direction, we need to subtract that distance.

[image: image114.png]
Now she moves forward, the bounding box hits the first step. Since the top surface of the first step is inside the box the trace returns a value from the bottem of the bounding box to the location the trace hit, a negative value. Taking our move_vec.z = - trace a negative times a negative is… a positive value, it will then move our entity Up, the positive direction of Z.

We place out trace code right after the line we handle our straff movement. Our code will look like this then in our script:

 move_vec[0] = (key_force.y)*4 *time;

 move_vec[1] = (key_comma - key_period) *3 *time;

 vec_set(temp,my.x);

 temp.z -= 4000;

 trace_mode = ignore_me+ignore_sprites+IGNORE_MODELS+USE_BOX;

 move_vec.z = -trace(my.x,temp);

 player.pan -= (key_force.x)*5 *time;

 move_mode = IGNORE_YOU + IGNORE_PASSABLE + IGNORE_PUSH + ACTIVATE_TRIGGER + GLIDE;

 ent_move(move_vec,NULLVECTOR);
Save and run. Now you should be walking up and down the stairs.

With this trace, if we walked off a tall ledge our entity would look to instantly drop to the floor. We can change that so it looks like it actualy falls by setting a movement rate to our move_vec.z calculation

move_vec.z = (-trace(my.x,temp))*3*time;

Well, other then for the level change we are done with TLlevel1. We will address level change early on into TLlevel2. So I will see you there (
