
3D Gamestudio Workshop Space Flight © Conitec February 2001 1

3D GameStudio

Workshop
Vertex Space Flight

by Nicholas Chionilos / February 2001

3D Gamestudio Workshop Space Flight © Conitec February 2001 2

Contents
Before we begin:..4

Lets get started!...5
Creating a Star Sphere..5

Step 1: Start with a Sphere in MED. ...6
Step 2: Flip Normals...7
Step 3: Scale the model..9
Step 4: Skinning the Sphere!...10

Creating the Space Level..13
Customizing the Space Flight...19
That�s a wrap!..20

APPENDIX : Details on the SPACESHP.WDL script..22

3D Gamestudio Workshop Space Flight © Conitec February 2001 3

Welcome to the Vertex Space Flight Workshop! I have produced this workshop to help people
create their own 3D space games using 3D GameStudio. This workshop uses some features that
became available with the recent (4.22) update.

This workshop, like the other workshops before it, is mostly aimed towards users with some
previous 3DGameStudio experience. I assume that you have worked through the tutorials and
understand how to use the tools (WED, MED, and WDL).

The spaceshp.wdl script that comes with the workshop was designed to simulate a ship flying in a
zero-gravity environment. It comes with three different Camera views, four different control flags
and 5 different parameters that can all be used to allow a great deal of flexibility in customizing
the flight characteristics of your ship.

This text is meant to complement the rest of the documentation that comes with 3DGameStudio,
not replace it. If something in this workshop is unclear to you please read through the manuals
that came with 3DGameStudio.

In conclusion, I would like to offer my special thanks to:
- Remi, for introducing me to the concept of the Sky Sphere
- Kyodai, for his generous donation of the ship model used in this workshop
- Vivi, for the very cool skin on the ship
- JCL, for his donation of the Chase Cam script
- Doug, for his infinite patience and all around guidance.

I hope you enjoy this workshop! Any questions or comments can be sent to
Nicholas.Chionilos@Vertexconsulting.com and I will do my best to answer them.

-Nick �WildCat� Chionilos.

3D Gamestudio Workshop Space Flight © Conitec February 2001 4

Before we begin:

Get the latest version
Before you begin, make sure you have the latest version of 3DGameStudio (4.22 or
greater) since we are going to make use of some of the new features that have been
added.

Prepare your workspace
Create a folder called �Space� in your GStudio folder. This is the folder where all of your game
elements will be stored.

Unzip the contents of space.zip into this folder. You folder should now contain the following
files:

spaceshp.wdl
spaceshp.mdl
sphere.mdl
starmap.pcx
stars.mdl
engine.wav
thrustr.wav

3D Gamestudio Workshop Space Flight © Conitec February 2001 5

Lets get started!

Ceating a space game is a little different from creating a shooter, a role playing game, or even a
flight simulator. The biggest difference is that most conventional levels use a stationary �Sky Box�
defined through WED to enclose the world, while a space level uses a model �Star Sphere� created
in MED that moves as the ship moves to enclose the level.

We are going to create a space scene in the following steps:

1. Create a Star Sphere to define what your heavens look like
2. Create a large level in WED
3. Place a ship in the center of the world
4. Assign the player_ship action to it

Creating a Star Sphere

A Star sphere is simply a very large sphere model that will create the view of the stars that we see
when we are in our space ship. We make it through the following steps:

1. Create a sphere model
2. Flip the sides on the polygons to effectively turn the sphere inside out.
3. Scale the sphere to a suitable size
4. Skin it with a space scene

While the theory of creating a star sphere is very simple. There are some practical considerations
to take into account in order to create a professional looking star map.

- The more polygons used in your sphere, the less distortion you will see around the edges of your
view as you turn in your game. I recommend between 500 and 1200 polygons.

- The larger your sphere, the farther away the polygons that make it up are from the camera, and
thus the less likely you are to see the shapes of the individual polygons.

- The more uniform you keep the individual polygons the less likely you are to have anomalies in
your star field.

MED is not necessarily the best place to start if you wish to build a sphere from scratch. The
sphere primitive in MED has too few polygons, and if you increase the polygon count with the
sub-divide tool, you get polygons of differing shapes.

For these reasons, I recommend that you either import a polygon from another model package like
Milkshape, or use the sphere.mdl that I have included as a starting point for your star sphere.

Enough talk. Open your MED editor and let�s create the heavens!

3D Gamestudio Workshop Space Flight © Conitec February 2001 6

Step 1: Start with a Sphere in MED.

We will begin by loading the sphere.mdl included with this tutorial. This model has 720 polygons
that are all the same shape, and is an excellent starting point for our sky sphere.

Open MED and select filefile!!!!openopen and select sphere.mdl from your �Space� folder.

Your screen should look something like this:

FIGURE 1: Sphere.mdl

Before we proceed, we want to be sure that we are working in Triangle Mode for our selections
and manipulations for this model. Do this by clicking the triangle mode icon from the left tool bar.
See Figure 1 for its location.

Go to the Edit menu and select all select all
You should now see all the polygons for the sphere highlighted in gold, as seen in Figure 2.

3D Gamestudio Workshop Space Flight © Conitec February 2001 7

Figure 2: Selecting all polygons

Step 2: Flip Normals

A normal is simply the direction that the visible side of a polygon is facing. View the normals now
by going to the optionsoptions !!!! show normalsshow normals !!!! show allshow all. Your results should look like figure 3.

Notice that the model looks �prickly� now. This is because each polygon has a small line coming
from its center and pointing away from the center of the model. This tells us that all polygons are
currently pointed out.

The reason that we are so concerned with the direction that the normals are pointing to, is because
the skin we apply to this sphere will only be visible from the direction that the normals are
pointing to. If the normals point out, you can only see the skin of this object when looking at it
from the outside. This would be fine if we wanted to make a planet that we would only view from
the outside.

Since our ship will be traveling inside the sphere, we need to flip the normals so that they will be
pointing into the center of the sphere. This way we will be able to see the skin that has our stars
when our camera is inside the model. Do this by clicking the flipflip normalsnormals button on the tool bar,
as shown in Figure 3.

3D Gamestudio Workshop Space Flight © Conitec February 2001 8

Figure 3: Viewing the normals on polygon faces

You should now have a sphere model with the normals all pointing inwards, as shown in figure 4.

Figure 4: Sphere with Normals Flipped inward

You may now go back to optionsoptions !!!! showshow normalsnormals !!!! nonenone. This will get your regular view of the
model back.

3D Gamestudio Workshop Space Flight © Conitec February 2001 9

Step 3: Scale the model

Scale the model to make it big. I suggest about 12,000 units along each axis. Do this by selecting
the Position tool from the tool bar as shown in figure 5. In the upper left window, right click and
hold your mouse button and then drag your cursor down.

This will have the effect of pulling the camera far away from your sphere and making it look very
small. (Test your distance by putting your cursor next to the right boundary of the top view. Make
sure that the Y displacement is fairly large, around 12,000 as shown in figure 5)

Figure 5: Camera positioned to scale the sphere

Next, select the scale tool, located 4 tools to the right of the position tool, as seen on figure 6. The
entire sphere should still be selected, so simply left click and drag the mouse cursor down across
one of the 2D views until it fills the view window.

3D Gamestudio Workshop Space Flight © Conitec February 2001 10

Figure 6: Resized sphere and �Inside� 3D view

Notice that the 3D view now appears to be inside the Sphere! Now we are getting somewhere!

Also notice the two splotches of color I put on the right and bottom edges of the sphere in the top
view. When your cursor is near these positions, the displacement indicators on the bottom of the
screen will give you a good estimate of how large you have made your sphere. The specific size is
not too critical. Just make it relatively big. You can always go back and adjust it later after trying it
out in your level.

Step 4: Skinning the Sphere!

The final step to creating the Star Sphere is to create a skin for it. In this example, I am going to use
MDL style skinning to save time. Depending on how you lay out your heavens, this might
produce a noticeable distortion of the stars at the seam between front and back. Using MD2 style
skinning will fix this.

The space sphere that I have included with this tutorial, stars.mdl uses the MD2 style skin. To
learn more about MD2 style skinning, I suggest you search on MD2 Skin on the Conitec user
forum or check out some of the excellent skinning tutorials found on the net and through the
Conitec links area.

To create our MDL style skin:

1) Click on the viewview menu, and select skinsskins to bring up the skin editor.
2) In the skin editor, click on editedit, then resizeresize skinskin. In dialog box, set the size of the picture file

that you will use for this skin. I have used 512 X 512 in this example. (Some older Video cards
like the Voodo 2 may require a smaller bitmap of 256 X 256. Try this if you get an error about
video memory)

3D Gamestudio Workshop Space Flight © Conitec February 2001 11

3) Click on editedit, then createcreate mdlmdl mappingmapping. Select frontfront and click okok in the dialog box. The
polygon map of the front and back of the model sphere should now be laid out on the skin as
seen in figure 7.

Figure 7: Exporting the MDL style skin map

4) Click on filefile, then exportexport and then either exportexport toto bmpbmp or pcxpcx, depending on your
preference.

5) Save your skin map
6) Open the skin map in the paint program of your choice. Keep it mostly black, with a sprinkling

of stars and other Celestial phenomena. (I used the file starmap.pcx file that is included with
this tutorial.)

7) Save the new skin map
8) Go back into the skin editor and click on File importimport !!!!!!!! skinskin imageimage. Use the skin image you

just painted. You should now have something that looks like figure 8.

3D Gamestudio Workshop Space Flight © Conitec February 2001 12

Figure 8: A completed Space Skin

Note that this is a �quick and dirty� star sphere. The triangles of the mapping have obviously
different sizes, and the stars in the flat image between them are not mapped onto the sphere. For a
really good sphere we�d need more time to create a cylindrical mapping, like for the earth globe in
an atlas.. However, space is dark and gracefully covers the holes and patches of our mapping.
Close down the skin editor, and admire your work using the position tool in the 3D view!

Click on filefile !!!! savesave asas to save your completed Star model in your �Space� folder. Call it
mystars.mdl

My heavens! You have just created� Your heavens!

To recap:
1) Create a sphere
2) Flip the normals
3) Scale it
4) Skin it!

3D Gamestudio Workshop Space Flight © Conitec February 2001 13

Creating the Space Level

The space level is actually nothing more than an invisible bounding box with our space ship
inside. Our view of the stars is tied to the position of our space ship. For this reason, our star
sphere is created by the script of the spaceship, after the spaceship synonym is set. This way the
sky will be taken care of automatically once we start the level and it will move as the ship moves,
to create the impression of a vast empty space.

To create our space level, Open WED and select filefile !!!!newnew.

Add a WAD to your level by selecting texturetexture !!!! texture managertexture manager
Click on the addadd wadwad button and select the WAD of your choice and then click the openopen
button as seen in figure 9. I am using the standard.wad file.

Close the Texture Manager window when you are done.

Figure 9: Adding a WAD to the level

3D Gamestudio Workshop Space Flight © Conitec February 2001 14

Next, we will create our bounding box. Do this by Selecting objectobject !!!! add primitiveadd primitive !!!!cubecube largelarge

Scale the cube, making it approximately 30,000 quants on a side.

Do this by increasing the view depth for each window by using the [+]key. Expand each
window�s depth to the size that you are shooting for (In our case, 30080 as seen in figure 10.)

Next, select the zoomzoom eyeeye tool from the main tool bar, Left Click and drag the mouse down on one
of the 2D screens. This will have the effect of zooming the camera **way** out so that we can see
enough of our level to scale it correctly. (I zoomed out as far as it would let me.) Your 2D cubes
will appear as tiny little dots at this point.

Figure 10: Setting the View depth

Now, select the scalescale tool and scale the cube in each window so that it is as large as it can be, and
still be visible in the other views. It should look like Figure 11.

3D Gamestudio Workshop Space Flight © Conitec February 2001 15

Figure 11: a box scaled to 30,000 quants

Next, hollow this cube with the [Alt / H]command. (Or go to editedit !!!! hollowhollow blockblock from the
menus)

Note that we did not make our bounding box the max size of �50,000 quants. This is because our
ship will always be positioned in the center of the star sphere, and the star sphere extends out
about 12,000 quants.

If our ship is stopped at 30,000 quants, and our stars expand out for another 12,000 we have
covered 42,000 quants... safely under our max level size. You want to make sure that parts of your
star sphere don�t drift past the magic 50,000 quant limit or you may have problems.

Apply the default texture to your bounding box by single Right clicking the texture with the
mouse and then left clicking the settingssettings selection. Be sure that the flat flag is set on the default
texture before you apply it to the box as shown by figure 12.

� the latest edition of A5 comes with an increased limit of 100.000 quants

3D Gamestudio Workshop Space Flight © Conitec February 2001 16

Figure 12: Selecting a flat Default texture

Now, that you have your box textured, Open the box�s properties window by clicking on the
properties button in the lower left corner of the screen. Make sure that the invisible flag is the
only one set as seen in figure 13.

Figure 13: Setting the Invisible flag on the Bounding box

Congratulations! You have just created your bounding box, the edge of known space!

3D Gamestudio Workshop Space Flight © Conitec February 2001 17

Now zoom down and add a number of primitives to your level by selecting objectobject !!!! addadd
primitiveprimitive and texture them as you wish.

The size, placement and textures on them are not particularly important, but make sure you have
a number of them sprinkled about. It�s especially important to have a few close to where you will
put the ship so you can get a feel for how the ship is moving. One of the problems with space is
that it�s mostly empty. With no stationary reference points, it is impossible to tell if you are
moving or not, and it is very easy to get lost.

Now, assign the spaceship.wdl Script to this level by Going into the filefile ! mapmap propertieproperties and
assign the spaceship.wdl to this map as seen in figure 14 below.

Figure 14: Adding the SPACESHP.WDL script to your level

We are in the home stretch now!

Just add a camera start position by going into objectobject ! addadd startstart positionposition. Position the camera
somewhere slightly off to the side but pointing towards the origin as seen in figure 15.

3D Gamestudio Workshop Space Flight © Conitec February 2001 18

Figure 15: Assigning the camera and ship

The last thing that we have to do to complete our first space level is to add a ship!

Do this by Selecting objectobject!loadload entityentity and use the file windows to find and add the
spaceshp.mdl model to our level. Place it at the origin, and make sure that your camera position is
point at it.

Then, right click on the ship, and bring up its properties box. Click the actionaction button and then
scroll through the list until you can select player_spaceship. Click okok.

Congratulations! You have just finished building your first space level!

Save the level in your "Space" folder and call it bigspace.wmp

buildbuild the level with the Level Map selected, and then run the level.

If you have done everything correctly, you Should see your spaceship floating in space!

3D Gamestudio Workshop Space Flight © Conitec February 2001 19

Figure 16: Our final Space level!

Play around with the ship for a while. The controls are simple:
- Use Left and Right arrows ["] / [#] to pan your ship
- Use Up and Down arrows [$] / [%] to control your ship's Tilt
- Use the [Space] bar to fire engines

Customizing the Space Flight

Once you have gotten familiar with the ship and how it handles, **Backup your spaceshp.wdl
script** and then try making some changes to the parameters and variables set in the
player_spaceship action of your spaceshp.wdl script.

Open the spaceshp.wdl script in your favorite editor and modify the variables listed below to suit
your own needs. Remember to save your changes and then run your level to see your changes at
work.

You may change the following variables within the script:

camera_type
Is initially set to 1, the �Chase Cam� mode, where the ship looks like it is stationary, and the
world seems to be in motion. This script was donated by JCL and will be improved in the
near future. When set to 2 you will see the view from the cockpit and when set to 3 you can
view your ship from the vantage of a fixed camera.

3D Gamestudio Workshop Space Flight © Conitec February 2001 20

my.auto_spin_stop
Is initially set to 1, which will automatically slow your spin when you are not actively
applying thrusters. When set to 0, the ship will spin until you manually apply thrusters for
the opposite direction.

my.auto_decel
Is initially set to 1, which will allow the ship to come to a stop. When set to 0, the ship will
continue to drift on it�s current vector.

my.limit_turn_speed
Is initially set to 1, which will limit how fast you spin based on the value of the
my.max_spin_speed variable. When set to 0, there is no turn limiting in effect.

my.limit_top_speed
When set to 1, will impose a speed limit on each vector of the thrust based on the value of
my.max_ship_speed. When set to 0, there is no speed limit.

my.engine_thrust
Defines the effective power of the �Main Engines�. Larger values make more thrust. The
default value is .5.

my.spin_rate
Defines the effective power of the �Turning Thrusters�. Larger values make a faster spin
(and make it harder to control the ship!) The default value is .15.

my. decel_rate
Defines the effective power of �Friction� on the ship in space. I know, not horribly realistic,
which is why you can turn it off by setting the my.auto_decel flag to 0, but it does make the
ship much easier to handle. The default value is .04.

my. max_spin_speed
Defines the effective top speed that the �Turning Thrusters� will still fire at. Larger values
allow a faster top speed for the spin rate of the ship. You can turn this option off by setting
the my.limit_turn_speed flag to 0. The default value is 5.

my. max_ship_speed
Defines the effective top speed for each vector of the ship�s motion. Larger values allow the
ship to achieve faster top speeds. You can turn this option off by setting the
my.limit_top_speed flag to 00.The default value is 20.

That�s a wrap!

This concludes the Vertex Space Flight Workshop. I hope you enjoyed it! This workshop only
scratches the surface of space based games. It is constructed on a fairly realistic physics model, and
can be lots of fun to work with, but there is also a lot of room for improvement. While this is an
excellent springboard to make a space simulator type game, you might want a little less realism
and a little more control to make an Arcade-type space game! I�d love to see what people come up
with.

Here are a few ideas for things that can be added to spice up your extra-terrestrial activities:
adding a panel for a cockpit (when in that view!), adding weapons, adding commands to control
the roll of your ship, prettier star maps, nicer features (including planets!) built in WED. Landing,
docking, and take-off sequences...

3D Gamestudio Workshop Space Flight © Conitec February 2001 21

Also, if you come up with a particularly interesting flight profile for a ship, post it on the Forum so
other people can enjoy it too!

One last thing... Look for the �Vertex Space Tool� to be landing on the Conitec Download page in
the near future. It is a panel based interface that allows you to change all of the flags and settings
�On the fly�!

The sky is no longer the limit!

- Nick �WildCat� Chionilos

For those brave souls who wish to peek under the hood and see what makes our space ship tick, I
have included Appendix for detailed comments on the script. It assumes a pretty solid
understanding of WDL, and in some places, a bit of math unless you are willing to take my word
on some things!

3D Gamestudio Workshop Space Flight © Conitec February 2001 22

APPENDIX : Details on the SPACESHP.WDL script
Welcome to the Space Template!
#
Contols are very simple:
Use Left and Right arrows to pan your ship
Use Up and Down arrows to control your ship's Tilt
Use the SPACE BAR to fire engines

NOTE: User Changeable fields are bold and blue - like this -

///
// A4 main wdl
///
// The PATH keyword gives directories where game files can be found,
// relative to the level directory
path "models"; // Path to model subdirectory - if any
path "sounds"; // Path to sound subdirectory - if any
path "bmaps"; // Path to graphics subdirectory - if any
path "images"; // Path to images subdirectory
path "..\\template"; // Path to WDL templates subdirectory

//
// The INCLUDE keyword can be used to include further WDL files,
// like those in the TEMPLATE subdirectory, with prefabricated actions
//

include <movement.wdl>;
include <messages.wdl>;
include <particle.wdl>;
include <doors.wdl>;
include <actors.wdl>;
include <weapons.wdl>;
include <war.wdl>;
include <menu.wdl>;

// Set the starting resolution for the system
ifdef lores;
var video_mode = 4; // 320x240
ifelse;
var video_mode = 6; // 640x480
endif;

var video_depth = 16; // D3D, 16 bit resolution
var fps_max = 40; // 40 fps max

// The MAIN function is called at game start and gets everything going

function main()
{

load_level <bigspace.wmb>;
load_status(); // restore global variables
wait 16;

}

3D Gamestudio Workshop Space Flight © Conitec February 2001 23

//
// SPACE SCRIPT BEGINS HERE
//

// Sounds:

sound main_engines,<engine.wav>;
sound thrusters,<thruster.wav>;
var thrust_handle = 0; // Sound handles let you control when sound
var engine_handle = 0; // is playing

// Synonyms:

synonym player_ship {type entity;}
synonym star_sphere {type entity;}

// The ACCEL_VECTOR tells the ship in which direction the thrust from the
// engines is coming. Because the ship was built with it's front pointing
// down the "X" axis, the thrust from the engine will always act on the "X"
// component of the ACCEL_VECTOR, which I have renamed ENGINE_THRUST for
// clarity.

define accel_vector,skill1;
define engine_thrust,skill1;

// While the ACCEL_VECTOR applies thrust relative to the SHIP'S orientation,
// the DRIFT_VECTOR applies the existing speed relative to the worlds
// orientation.

define drift_vector,skill4;
define drift_vector_x,skill4;
define drift_vector_y,skill5;
define drift_vector_z,skill6;

define ship_angles,skill7; // Pan, Tilt and Roll speeds for ship
define pan_speed,skill7; // How fast you are panning
define tilt_speed,skill8; // How fast you are tilting
define roll_speed,skill9; // How fast you are rolling
define spin_rate,skill10; // The acceleration of your spin

// *** Note: While the coefficient of friction in space is for all practical
// purposes **ZERO**, using a small value in DECEL_RATE or putting a cap on
// the ships speed and spin can make it much easier to handle the ship or
// tune your game play. Think of it as the Navigation computer automatically
// taking the appropriate actions when the ship is not under active control.
// These fields are used when their corresponding flag is turned on.

// How fast "Friction" will slow you down

define decel_rate,skill11;

// Cap for turn speed if LIMIT_TURN_SPEED flag is set
define max_spin_speed,skill12;

// Cap for ship speed if LIMIT_TOP_SPEED flag is set
define max_ship_speed,skill13;

//*** Define Flags for space ship flight characteristics
define auto_spin_stop,flag1; // These flags should all be off for
define auto_decel,flag2; // maximum realism, but can be
define limit_turn_speed,flag3; // useful to make a ship "Handle"
define limit_top_speed,flag4; // better.

//define star_sky,<stars.mdl>; // Default SPHERE MODEL from tutorial
define star_sky,<mystars.mdl>; // New SPHERE MODEL that users created

3D Gamestudio Workshop Space Flight © Conitec February 2001 24

// ************ Working Variables start here *******************
var ship_angs[3]; // Used in angle computations for pan and tilt
var engine_work_speed[3]; // Used in speed and drift calculations

// Camera Variables
 var camera_type;
 var camera_spot[3];
 var workang[3];

// The space sphere simply moves with the player space ship. By changing the
// spheres X, Y, and Z coordinates directly through it�s POS variable, instead
// of using the MOVE command, we eliminate all collision checking, which is
// what we want. The Star Sphere should be able to go through the bounding box of
// the level. The Ship should not!

action space_sphere
{

star_sphere = me;

while (1) // Constantly keep the player at the center of the universe
{

vec_set(my.pos,player_ship.pos);
wait 1;

}
}

action player_spaceship
{
// Set Camera mode

camera_type = 1; //**** 1 = Chase Cam, 2 = Cockpit, 3 = Stationary ****

// Set Synonym for future use and Zero out all ship speeds
 player_ship = me;

my.narrow = on; // Use the smaller collision hull
vec_set(my.accel_vector,nullvector); // No starting speed
vec_set(my.drift_vector,nullvector); // No starting momentum
create star_sky,my.pos,space_sphere; // Initialize background stars

//***
// All special flight flags are on to start. Set them to 0 to turn them off.

my.auto_spin_stop = 1; // Let the ship stop spinning by itself
my.auto_decel = 1; // Let the ship slow down by using MY.DECEL_RATE
my.limit_turn_speed = 1; // Limit how fast you spin based on MY.MAX_SPIN_SPEED
my.limit_top_speed = 1; // Ship "speedlimit" based on MY.MAX_SHIP_SPEED

// Starting flight Characteristics for ship:

my.engine_thrust = .5; // Strength of the main engines
my.spin_rate = .15; // Strength of the steering thrusters
my.decel_rate = .04; // "Drift" deceleration rate
my.max_spin_speed = 5; // Top speed for changes in ships orientation
my.max_ship_speed = 20; // Top speed the ship can go

//***

while (1) {

*****Turning thruster logic here:
#
If you fire a thruster and you are using LIMIT_TURN_SPEEDS then check
to make sure you are still under the speed limit. Do this for the

3D Gamestudio Workshop Space Flight © Conitec February 2001 25

Left (CUL), Right (CUR), Up (CUU), and Down (CUD) cursor keys

if (key_cul == 1)
 {if ((my.limit_turn_speed == 0) ||
 (my.limit_turn_speed == 1) &&
 (my.pan_speed < my.max_spin_speed))

{my.pan_speed += my.spin_rate * time;
 if (thrust_handle == 0) // no sound playing
 {play_loop thrusters,15; // Play the thruster sound
 thrust_handle = result;}}}

if (key_cur == 1)
 {if ((my.limit_turn_speed == 0) ||
 (my.limit_turn_speed == 1) &&
 (my.pan_speed > -my.max_spin_speed))

{my.pan_speed -= my.spin_rate * time;
 if (thrust_handle == 0) // no sound playing
 {play_loop thrusters,15; // Play the thruster sound
 thrust_handle = result;}}}

if (key_cuu == 1)
 {if ((my.limit_turn_speed == 0) ||
 (my.limit_turn_speed == 1) &&
 (my.tilt_speed < my.max_spin_speed))

{my.tilt_speed += my.spin_rate * time;
 if (thrust_handle == 0) // no sound playing
 {play_loop thrusters,15; // Play the thruster sound
 thrust_handle = result;}}}

if (key_cud == 1)
 {if ((my.limit_turn_speed == 0) ||
 (my.limit_turn_speed == 1) &&
 (my.tilt_speed > -my.max_spin_speed))

{my.tilt_speed -= my.spin_rate * time;
 if (thrust_handle == 0) // If no sound playing
 {play_loop thrusters,15; // Play the thruster sound
 thrust_handle = result;}}}

if ((thrust_handle != 0) && // If sound is playing...
(key_cuu == 0) &&
(key_cud == 0) && // ...and...
(key_cul == 0) &&
(key_cur == 0)) // No arrow keys were pressed

{stop_sound thrust_handle; // stop the sound
 thrust_handle = 0;}

//******* If using Auto_Spin_Stop, Slow the ship�s spin when not actively stearing.

if (my.auto_spin_stop == 1)
{stop_rotation();}

//********Main Engine firing is here:

if (key_space == 1) // if the space bar is pressed
 {if (engine_handle == 0) // If no sound playing, then play

 {play_loop main_engines,25;
 engine_handle = result;}

// 1) Set ENGINE_WORK_SPEED to the current thrust
// 2) Vec_Rotate will convert the thrust relative to the ship's orientation
// (which is only the x axis) and convert it into the
// X,Y,& Z components relative to the world's orientation.
//
// Note: Steps 1 and 2 could also have been done using trigonometry to convert
// to the world orientation via the following lines:
// X: ENGINE_WORK_SPEED[0] += (MY.ENGINE_THRUST * COS(MY.TILT)
// * COS(MY.PAN));

3D Gamestudio Workshop Space Flight © Conitec February 2001 26

// Y: ENGINE_WORK_SPEED[1] += (MY.ENGINE_THRUST * COS(MY.TILT)
// * SIN(MY.PAN));
// Z: ENGINE_WORK_SPEED[2] += (MY.ENGINE_THRUST * SIN(MY.TILT));
//
// Using the VEC_ROTATE seemed a little easier on the eye.

vec_set(engine_work_speed,my.engine_thrust);
vec_rotate(engine_work_speed,my.pan);

// If there is no speed limit, then apply the thrust, If there is a
// speed limit, apply only the components of thrust that have not maxed out

if (my.limit_top_speed == 0)
{vec_add(my.drift_vector,engine_work_speed);}

else
{if (abs(engine_work_speed.x + my.drift_vector_x) < my.max_ship_speed)
 {my.drift_vector_x += engine_work_speed.x;}

 if (abs(engine_work_speed.y + my.drift_vector_y) < my.max_ship_speed)
 {my.drift_vector_y += engine_work_speed.y;}

 if (abs(engine_work_speed.z + my.drift_vector_z) < my.max_ship_speed)
 {my.drift_vector_z += engine_work_speed.z;}}}

else
{stop_sound engine_handle ; // stop playing sound
 engine_handle = 0;}

//**** Set it all in motion
my.roll_speed = 0; // We don't use ROLL as an active control
ROTATE ME,MY.SHIP_ANGLESS,NULLVECTOR; // Rotate the ship based on our pan/tilt rates

// If you are not actively firing the engines, and Auto_decel is active, slow down the ship
if ((key_space != 1) && (my.auto_decel == 1))

{call decel_ship;}

// calculate a distance from the speed
vec_set(temp,my.drift_vector);
vec_scale(temp,time);

 move(me,nullvector,temp); // Then move the ship according to Drift

point_camera(); // Adjust the camera
 wait 1;}
}

function stop_rotation()
{
// **** If you are still rotating, apply a rotation in the opposite direction to slow down
//

if (player_ship.pan_speed == 0)
 {goto checktilt;}
else
 {if ((key_cul == 0) && (key_cur == 0))

{if (player_ship.pan_speed > 0)
 {player_ship.pan_speed -= player_ship.spin_rate * time;}
 else
 {player_ship.pan_speed += player_ship.spin_rate * time;}}
 if (abs(player_ship.pan_speed) < .02)

{player_ship.pan_speed = 0;}}
checktilt:

if (player_ship.tilt_speed == 0)
 {return;}
else
 {if ((key_cuu == 0) && (key_cud == 0))

{if (player_ship.tilt_speed > 0)
 {player_ship.tilt_speed -= player_ship.spin_rate * time;}
 else

3D Gamestudio Workshop Space Flight © Conitec February 2001 27

 {player_ship.tilt_speed += player_ship.spin_rate * time;}}
 if (abs(player_ship.tilt_speed) < .02)

{player_ship.tilt_speed = 0;}}
}
}

DECEL_SHIP works like this:
*** If you have momentum:
1) Set ENGINE_WORK_SPEED to have the decel rate as it's "X" component of thrust
(It's negative because we are counter-thrusting to slow down,
not thrusting to speed up)
2) Figure out the pan and tilt angles that correspond to the existing drift
vector using Vec_to_angle.
3) Use Vec_Rotate to convert the thrust from the Ship's perspective to the real
world's perspective.
4) Use the Vec_Scale command to time correct these speeds based on frame rate
5) Add this new Deceleration Vector to the existing Drift Vector to slow down
6) If you are going really slow anyway (< .02), set your speed to zero
*** If you are stopped: do nothing and return

action decel_ship
{

if (vec_length(player_ship.drift_vector) != 0) // If I have momentum
{vec_set(engine_work_speed,nullvector);
 engine_work_speed.x = -player_ship.decel_rate;
 vec_to_angle(ship_angs.pan,player_ship.drift_vector);
 vec_rotate(engine_work_speed,ship_angs.pan);
 vec_add(my.drift_vector,engine_work_speed);}

else
{return;} // If DRIFT_VECTOR is Zero, we are done

*** If DRIFT_VECTOR is close enough to zero, call it zero. This will reduce the number
of times we need to go through this loop before an entity has no more momentum.
When an entity is not drifting, we don�t need to do any math for it, and so we can
reduce the overhead on our computer. This can help increase frame rates if many entities
are using this routine at the same time.

if (camera_type == 3)
{goto stationary;}

// Begin Chase Camera code:
// (NOTE: The Chase Cam portion of this script was donated by JCL.
// It is currently somewhat rough, and I don't understand enough
// about how it works to attempt to explain it. Please direct
// questions about this section of code to him.)

camera.genius = null; // Camera won't ignore anyone
vec_set(workang.pan,player_ship.pan);
camera_spot.x = -200; // Relative displacement of camera to
camera_spot.y = 0; // ship when in chase mode
camera_spot.z = 80;

vec_set(camera.x,camera_spot.x);
vec_rotate(camera.x,player_ship.pan);
vec_add(camera.x,player_ship.x);

// Set Camera PAN and TILT angles
vec_set (tempa.x,player_ship.x);
vec_sub (tempa.x,camera.x);
vec_to_angle(camera.pan,tempa);

// Set Camera ROLL angles
c1.x = tempa.y;
c1.y = -tempa.x;
c1.z = 0;

c2.x = -camera_spot.y;

3D Gamestudio Workshop Space Flight © Conitec February 2001 28

c2.y = camera_spot.x;
c2.z = 0;

vec_rotate(c2,player_ship.pan);

// Get the angle difference between both vectors using dot product
tempa = c1.x*c2.x +c1.y*c2.y;
tempa /= vec_length(c1);
tempa /= vec_length(c2);

if (c2.z < 0)
{camera.roll = acos(tempa);}

else
{camera.roll = -acos(tempa);}

return;

//Cockpit Camera starts here
cockpit:

camera.genius = player_ship;
vec_set(camera.x,player_ship.x); // Camera is where the ship is
vec_set(camera.pan,player_ship.pan); // Camera looks in the same direction as ship
RETURN;

//Stationary Camera Starts here
stationary:

camera.genius = null;
vec_set(camera_work,player_ship.x); // Point Camera at player
vec_sub(camera_work,camera.x);
vec_to_angle(camera.pan,camera_work); // now camera looks at the player
return;

}

///////////// SPACE SCRIPT ENDS HERE //////////////////////

