The following is an optimized version of the Gaussian Filter Strategy, which includes Decision Trees, and Neural Networks to monitor error correction within the signals.

This code combines decision trees and neural networks to enhance previous versions of the implementation. It initializes and trains both models, uses Gaussian filters for signal processing, and employs a meta-model neural network to integrate their predictions for final trading actions, aiming to reduce errors and improve trading performance in a systematic, data-driven manner.

Code
#include <default.c>

// Variables
var alpha, beta;
var filt, filttr, hband, lband;
vars PriceClose, GaussianFiltered, GaussianFilteredTR;
vars UpperBand, LowerBand;
var Signals[2];
var MetaSignals[2]; // Signals for the meta-model

// Initialization
void init() {
    BarPeriod = 60; // 1-hour bars
    LookBack = 150; // Lookback period for the Gaussian filter

    PriceClose = series(priceClose());
    GaussianFiltered = series(0);
    GaussianFilteredTR = series(0);
    UpperBand = series(0);
    LowerBand = series(0);

    alpha = calculateAlpha(144, 4); // Sampling Period and Poles
    beta = (1 - cos(2 * PI / 144)) / (pow(1.414, 2 / 4) - 1);

    adviseLong(DTREE, 0, NULL, 0); // Initialize the Decision Tree model
    adviseLong(NN, 0, NULL, 0); // Initialize the Neural Network model
    adviseLong(NN, 1, NULL, 0); // Initialize the Meta-Model Neural Network
}

// Calculate Alpha
var calculateAlpha(int period, int poles) {
    var beta = (1 - cos(2 * PI / period)) / (pow(1.414, 2 / poles) - 1);
    return -beta + sqrt(beta * beta + 2 * beta);
}

// Optimized Gaussian Filter with Bands
var filt9x_with_bands(var a, var s, int poles, var deviationMultiplier, var* upperBand, var* lowerBand) {
    static vars f[10]; // Array to store previous filter values
    var x = 1 - a;
    var filt = s * a;

    // Precompute powers of x to avoid redundant calculations
    var x_powers[10];
    x_powers[1] = x;
    for (int i = 2; i <= 9; i++) {
        x_powers[i] = x_powers[i - 1] * x;
    }

    // Calculate the filter value iteratively
    var coefficients[10] = {0, 1, -36, 84, -126, 126, -84, 36, -9, 1};
    for (int i = 1; i <= poles; i++) {
        filt += coefficients[i] * x_powers[i] * f[i];
    }

    // Shift the previous values in the array
    for (int j = 9; j > 0; j--) {
        f[j] = f[j - 1];
    }
    f[0] = filt;

    // Calculate mean and variance in a single pass
    var sum = 0, varianceSum = 0, count = 10;
    for (int j = 0; j < count; j++) {
        sum += f[j];
    }
    var mean = sum / count;

    for (int j = 0; j < count; j++) {
        varianceSum += (f[j] - mean) * (f[j] - mean);
    }
    var stddev = sqrt(varianceSum / count);

    // Calculate upper and lower bands
    *upperBand = filt + deviationMultiplier * stddev;
    *lowerBand = filt - deviationMultiplier * stddev;

    return filt;
}

// Gaussian Filter Calculation
void calculateGaussianFilter(vars src, int poles, int period) {
    vars filtSeries = series(0);
    vars filtSeriesTR = series(0);
    var lag = (period - 1) / (2 * poles);
    vars srcData = series(0);
    vars trData = series(0);
    
    for (int i = 0; i < Bar; i++) {
        if (i > lag) {
            srcData[i] = src[i] + (src[i] - src[i - lag]);
            trData[i] = TR() + (TR() - TR(lag));
        } else {
            srcData[i] = src[i];
            trData[i] = TR();
        }
    }
    
    for (int i = 0; i < Bar; i++) {
        var upper, lower;
        filtSeries[i] = filt9x_with_bands(alpha, srcData[i], poles, 1.414, &upper, &lower);
        filtSeriesTR[i] = filt9x_with_bands(alpha, trData[i], poles, 1.414, &upper, &lower);
        UpperBand[i] = upper;
        LowerBand[i] = lower;
    }
    
    GaussianFiltered[0] = filtSeries[0];
    GaussianFilteredTR[0] = filtSeriesTR[0];
    
    hband = UpperBand[0];
    lband = LowerBand[0];
}

// Meta-Model for Combining Predictions using Neural Network
var metaModel(var dtreePrediction, var nnPrediction) {
    MetaSignals[0] = dtreePrediction;
    MetaSignals[1] = nnPrediction;
    return advise(NN, 1, MetaSignals, 2); // Use another neural network (NN) model as meta-model
}

// Main Trading Logic
void run() {
    BarPeriod = 60; // 1-hour bars
    LookBack = 150; // Lookback period
    TradesPerBar = 2;

    if (Train) {
        Hedge = 2; // Hedge during training
    }

    set(RULES | TESTNOW); // Set rules and test mode

    if (is(INITRUN)) {
        init();
    }

    calculateGaussianFilter(PriceClose, 4, 144);

    // Generate some signals from GaussianFiltered in the -100..100 range
    Signals[0] = (GaussianFiltered[0] - GaussianFilteredTR[0]) / PIP;
    Signals[1] = 100 * FisherN(priceClose(), 100);

    // Train and trade the signals using decision tree and neural network models
    var dtreePrediction = advise(DTREE, 0, Signals, 2);
    var nnPrediction = advise(NN, 0, Signals, 2);

    var finalDecision = metaModel(dtreePrediction, nnPrediction);
    
    if (finalDecision > 0)
        enterLong();
    else if (finalDecision < 0)
        enterShort();
    else {
        if (isLong()) exitLong();
        if (isShort()) exitShort();
    }
}