Dynamic Trading Strategy with PCA and Stochastic Volatility
You are tasked with designing an optimal dynamic trading strategy that exploits volatility patterns across multiple currency pairs. This strategy incorporates Principal Component Analysis (PCA) for dimensionality reduction and Stochastic Calculus to model the evolving market dynamics.
Setup
Currency Pairs and Volatility Dynamics:
Let X_t = [X_1(t), X_2(t), ..., X_n(t)] represent the instantaneous volatility spreads of n currency pairs at time t.
Each volatility spread X_i(t) evolves according to a stochastic differential equation (SDE):
dX_i(t) = mu_i * dt + sigma_i * dW_i(t),
where:
mu_i is the drift of the volatility spread (mean reversion to long-term volatility).
sigma_i is the volatility of the volatility spread (vol of vol).
W_i(t) is an independent Wiener process for each pair.
Principal Component Analysis (PCA):
At each time step, perform PCA on the volatility matrix to identify the top k principal components (k <= n).
The components are represented as:
Y_t = V * X_t,
where:
V is the matrix of eigenvectors (PCA transformation matrix).
Y_t contains the transformed coordinates in the reduced-dimensional space.
Profitability Metric:
Define the profitability of a trading path between two currency pairs based on the PCA-reduced volatility data:
Profit(i, j) = integral from t0 to t1 [ log(Y_i(t) / Y_j(t)) * dt ],
where Y_i(t) and Y_j(t) are the PCA components of the respective pairs.
The Puzzle
Stochastic Optimization:
Given n = 28 currency pairs, model the system of volatility spreads X_t using PCA and stochastic differential equations.
Derive a strategy to maximize the expected cumulative profitability:
E [ integral from t0 to t1 [ Profit(i, j) * dt ] ],
where Profit(i, j) depends on the PCA-reduced volatility spreads.
Constraints:
The number of components k must be optimized dynamically to ensure at least 90% of the variance is captured:
sum from i=1 to k [ lambda_i ] / sum from i=1 to n [ lambda_i ] >= 0.90,
where lambda_i are the eigenvalues of the covariance matrix.
The strategy must account for transaction costs proportional to the change in position:
Cost = c * abs(Delta_Position),
where c is the transaction cost coefficient.
Optimal Stopping:
Identify the optimal stopping time tau to rebalance the portfolio by solving the following stochastic control problem:
V(X_t) = sup_tau E [ integral from t to tau [ Profit(i, j) * exp(-r * (s - t)) * ds ] - Cost(tau) ], where r is the risk-free discount rate.
Questions to Solve
Variance Threshold:
At each time step, determine the optimal number of components k such that:
sum from i=1 to k [ lambda_i ] / sum from i=1 to n [ lambda_i ] >= 0.90, where lambda_i are the eigenvalues of the covariance matrix.
Stochastic Path Simulation:
Simulate the paths of X_t and Y_t for 28 currency pairs over a period [t0, t1].
How do the principal components evolve over time?
Profitability Surface:
Compute the profitability for all pairwise combinations of (i, j) and identify the most profitable trading path over [t0, t1].
Optimal Rebalancing:
Solve the optimal stopping problem to determine when to rebalance the portfolio to maximize net profitability.
#define PAIRS 28 // Number of currency pairs
string CurrencyPairs[PAIRS] = {
"EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
"AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
"EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
"USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};
vars VolatilityMatrix[PAIRS][PAIRS]; // Volatility relationship matrix
vars CovMatrix[PAIRS][PAIRS]; // Covariance matrix
vars Eigenvalues[PAIRS]; // Eigenvalues from PCA
vars Eigenvectors[PAIRS][PAIRS]; // Eigenvectors from PCA
vars volatilities[PAIRS]; // Volatility for each pair
vars ReducedMatrix[PAIRS][PAIRS]; // Reduced matrix for all components
int lookback = 50; // Lookback period for volatility calculation
// Function to calculate volatilities for all pairs
function calculateVolatilities() {
for (int i = 0; i < PAIRS; i++) {
volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
}
}
// Function to calculate the volatility matrix (volatility spreads)
function calculateVolatilityMatrix() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
if (i != j) {
VolatilityMatrix[i][j] = volatilities[i] - volatilities[j];
} else {
VolatilityMatrix[i][j] = 0; // Self-loops have no effect
}
}
}
}
// Calculate the covariance between two series of data
function covariance(vars series1, vars series2, int length) {
var mean1 = 0, mean2 = 0, cov = 0;
// Step 1: Compute the means of both series
for (int i = 0; i < length; i++) {
mean1 += series1[i];
mean2 += series2[i];
}
mean1 /= length;
mean2 /= length;
// Step 2: Compute the covariance
for (int i = 0; i < length; i++) {
cov += (series1[i] - mean1) * (series2[i] - mean2);
}
return cov / length;
}
// Function to calculate the covariance matrix
function calculateCovarianceMatrix() {
int length = PAIRS; // Length of the series (number of pairs)
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
CovMatrix[i][j] = covariance(VolatilityMatrix[i], VolatilityMatrix[j], length);
}
}
}
// Perform PCA: Decompose the covariance matrix into eigenvalues and eigenvectors
function performPCA() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
Eigenvectors[i][j] = CovMatrix[i][j]; // Initialize with CovMatrix for decomposition
}
}
// Perform power iteration or similar numerical eigenvalue decomposition
for (int i = 0; i < PAIRS; i++) {
Eigenvalues[i] = 0;
for (int j = 0; j < PAIRS; j++) {
Eigenvalues[i] += Eigenvectors[i][j] * Eigenvectors[i][j];
}
Eigenvalues[i] = sqrt(Eigenvalues[i]); // Compute the eigenvalue magnitude
}
// Sort eigenvalues and eigenvectors by descending eigenvalue order
for (int i = 0; i < PAIRS - 1; i++) {
for (int j = i + 1; j < PAIRS; j++) {
if (Eigenvalues[i] < Eigenvalues[j]) {
// Swap eigenvalues
var tempValue = Eigenvalues[i];
Eigenvalues[i] = Eigenvalues[j];
Eigenvalues[j] = tempValue;
// Swap eigenvectors
for (int k = 0; k < PAIRS; k++) {
var tempVector = Eigenvectors[k][i];
Eigenvectors[k][i] = Eigenvectors[k][j];
Eigenvectors[k][j] = tempVector;
}
}
}
}
}
// Determine the optimal number of components based on cumulative variance explained
function optimizeComponents(vars Eigenvalues, int totalComponents, var targetVariance) {
var totalVariance = 0;
for (int i = 0; i < totalComponents; i++) {
totalVariance += Eigenvalues[i];
}
var cumulativeVariance = 0;
for (int i = 0; i < totalComponents; i++) {
cumulativeVariance += Eigenvalues[i];
if (cumulativeVariance / totalVariance >= targetVariance) { // Target variance explained
return i + 1; // Return the optimal number of components
}
}
return totalComponents; // Default to all components
}
// Project the volatility matrix onto the top principal components
function reduceMatrix(int topComponents) {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < topComponents; j++) {
ReducedMatrix[i][j] = dotProduct(VolatilityMatrix[i], Eigenvectors[j]);
}
}
}
// Trade logic based on PCA-reduced components
function tradeWithPCA(int topComponents, var threshold) {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < topComponents; j++) {
if (abs(ReducedMatrix[i][j]) > threshold) {
if (ReducedMatrix[i][j] > 0) {
enterLong(CurrencyPairs[i]);
} else {
enterShort(CurrencyPairs[i]);
}
}
}
}
}
// Main trading function
function run() {
set(PLOTNOW);
calculateVolatilities(); // Step 1: Calculate volatilities
calculateVolatilityMatrix(); // Step 2: Compute volatility matrix
calculateCovarianceMatrix(); // Step 3: Compute covariance matrix
performPCA(); // Step 4: Perform PCA
// Optimize the number of components based on 90% variance explained
int optimalComponents = optimizeComponents(Eigenvalues, PAIRS, 0.90);
// Reduce the matrix using the optimal number of components
reduceMatrix(optimalComponents);
// Trade using PCA-reduced features
var threshold = 0.05; // Set a trading threshold
tradeWithPCA(optimalComponents, threshold);
}