Gamestudio Links
Zorro Links
Newest Posts
optimize global parameters SOLVED
by dBc. 09/27/25 17:07
ZorroGPT
by TipmyPip. 09/27/25 10:05
Release 2.68 replacement of the .par format
by Martin_HH. 09/23/25 20:48
assetHistory one candle shift
by jcl. 09/21/25 11:36
Plugins update
by Grant. 09/17/25 16:28
AUM Magazine
Latest Screens
Rocker`s Revenge
Stug 3 Stormartillery
Iljuschin 2
Galactic Strike X
Who's Online Now
2 registered members (TipmyPip, AndrewAMD), 15,922 guests, and 5 spiders.
Key: Admin, Global Mod, Mod
Newest Members
krishna, DrissB, James168, Ed_Love, xtns
19168 Registered Users
Previous Thread
Next Thread
Print Thread
Rate Thread
Page 6 of 11 1 2 4 5 6 7 8 10 11
Entangled Kernel Arbitrage [Re: TipmyPip] #488510
01/02/25 09:02
01/02/25 09:02
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Consider the following Puzzle :

You are tasked with designing an algorithmic trading strategy for volatility arbitrage using a nonlinear volatility model. Your system must operate across
𝑁=28 currency pairs, where the relationships between volatilities are nonlinear and highly entangled. The problem involves deciphering the following computational puzzle:

The Problem
Volatility Web: Each currency pair 𝐶𝑖 has an evolving volatility 𝑉𝑖(𝑡) over time 𝑡, defined by the entangled volatility equation:

Vᵢ(t) = αᵢ ⋅ sin((π / 2) ⋅ Vⱼ(t-1)) + βᵢ ⋅ cos((π / 3) ⋅ Vₖ(t-2)) + γᵢ

Where:

𝑗≠𝑘≠𝑖 and 𝑗,𝑘∈[1,𝑁]

𝛼𝑖,𝛽𝑖,𝛾𝑖 are coefficients dependent on historical price movements.
𝑡 represents discrete time steps (ticks).
Kernel Transform: To uncover hidden arbitrage opportunities, a Gaussian kernel transformation is applied to the volatility spreads between pairs:

Kᵢⱼ(t) = exp(-((Vᵢ(t) - Vⱼ(t))²) / (2 ⋅ σ²))

Where 𝐾𝑖𝑗(𝑡)​ represents the similarity between volatilities 𝑉𝑖 and 𝑉𝑗.

Dynamic Market Dynamics: At any tick 𝑡, the kernel matrix 𝐾(𝑡) evolves based on incoming price data. Your goal is to extract principal components from 𝐾(𝑡) to identify arbitrage paths.

Principal Component Noise: The extracted components 𝜆1,𝜆2,…,𝜆𝑛 are influenced by noise-induced eigenvalue drift:

λₖ'(t) = λₖ(t) ⋅ (1 + ηₖ(t))

Where:

𝜂𝑘(𝑡) is Gaussian noise with variance proportional to the eigenvalue magnitude:
𝜂𝑘(𝑡)∼𝒩(0,𝜆𝑘(𝑡)⋅𝜈)​.
𝜈 is a tunable noise coefficient.

Profit Extraction: The trading signal for each pair 𝐶𝑖 is generated from the reduced kernel matrix
𝑅𝑖(𝑡) (t), calculated by projecting 𝐾(𝑡) onto the top 𝑚 m-principal components:

Rᵢ(t) = ∑ₖ₌₁ᵐ (⟨Kᵢ(t), vₖ⟩ ⋅ vₖ)

Where
𝑣𝑘 is the 𝑘-th eigenvector.

Dynamic Threshold for Execution: Trades are executed when:

Signal(Cᵢ) = Rᵢ(t) / √(∑ⱼ₌₁ⁿ Rⱼ(t)²) > Θ(t)

The threshold Θ(𝑡) evolves dynamically:

Θ(t) = 𝔼[R(t)] + δ ⋅ StdDev(R(t))

Where:

𝔼[𝑅(𝑡)] is the mean of 𝑅𝑖(𝑡) across all pairs. 𝛿 is a risk-adjustment coefficient.

Your Tasks
Model the Volatility Web: Simulate 𝑉𝑖(𝑡)
​
(t) for all 𝑖∈[1,𝑁] over 1000 ticks, ensuring the coefficients 𝛼𝑖,𝛽𝑖,𝛾𝑖 are randomly initialized but correlated to historical price changes.

Construct the Kernel Matrix: Compute 𝐾𝑖𝑗(𝑡)​ at each tick using the Gaussian kernel formula.

Perform Kernel PCA: Decompose 𝐾(𝑡) into eigenvalues 𝜆𝑘(𝑡) and eigenvectors 𝑣𝑘(𝑡)​. Extract the top 𝑚=3 components for trading signals.

Account for Noise: Simulate 𝜂𝑘(𝑡) as Gaussian noise and apply it to the eigenvalues to observe how noise affects the trading signals.

Optimize the Threshold: Experiment with different values of 𝛿 to maximize profitability while minimizing drawdowns.

Trading Logic: Implement a trading strategy that enters long or short positions based on the dynamic threshold Θ(𝑡). Evaluate performance using a back testing framework.

Additional Complexity

To further enhance the challenge, consider:

Dynamic Sigma for Kernel: Allow 𝜎 in the Gaussian kernel to adapt based on volatility clustering:

σ(t) = σ₀ ⋅ (1 + κ ⋅ StdDev(V(t)))

Multi-Asset Dependencies: Introduce correlation across non-currency asset classes (e.g., equities, bonds) to impact 𝑉𝑖(𝑡) (t).

Optimization of Principal Components: Automatically optimize the number of components 𝑚 to balance signal strength and noise robustness.

Puzzle Objective
Your task is to:

Identify nonlinear arbitrage paths hidden in the noisy principal components.
Design an efficient algorithm that adapts to the dynamic nature of the kernel matrix and volatility web.
Maximize cumulative profitability while maintaining a Sharpe ratio above 2.0 over the simulated 1000-tick dataset.


Code
#define PAIRS 28 // Number of currency pairs

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars VolatilityMatrix[PAIRS][PAIRS];  // Volatility relationship matrix
vars kernelMatrix[PAIRS][PAIRS];     // Kernel matrix for Kernel PCA
vars eigenvalues[PAIRS];             // Eigenvalues from Kernel PCA
vars eigenvectors[PAIRS][PAIRS];     // Eigenvectors from Kernel PCA
vars volatilities[PAIRS];            // Volatility for each pair
vars ReducedMatrix[PAIRS][PAIRS];    // Reduced matrix for all components
vars smoothedSignals[PAIRS];         // Smoothed signals for risk control
int lookback = 50;                   // Lookback period for volatility calculation
var sigma = 0.5;                     // Kernel width parameter
var dynamicThreshold;                // Dynamic trading threshold

// Function to calculate volatilities for all pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i]), lookback));
    }
}

// Function to calculate the volatility matrix (volatility spreads)
function calculateVolatilityMatrix() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            if (i != j) {
                VolatilityMatrix[i][j] = volatilities[i] - volatilities[j];
            } else {
                VolatilityMatrix[i][j] = 0; // Self-loops have no effect
            }
        }
    }
}

// Function to calculate the kernel matrix using a Gaussian kernel
function calculateKernelMatrix(vars VolatilityMatrix[PAIRS][PAIRS], vars kernelMatrix[PAIRS][PAIRS], var sigma) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix[i][j] = exp(-pow(VolatilityMatrix[i][j], 2) / (2 * pow(sigma, 2))); // Gaussian kernel
        }
    }
}

// Perform Kernel PCA: Decompose the kernel matrix into eigenvalues and eigenvectors
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars eigenvalues, vars eigenvectors) {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors); // Decompose the kernel matrix
}

// Reduce data using the top principal components
function reduceKernelData(vars kernelMatrix[PAIRS][PAIRS], vars eigenvectors[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS], int numComponents) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < numComponents; j++) {
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Calculate a dynamic threshold based on standard deviation of reduced signals
function calculateDynamicThreshold(int topComponents) {
    var sumSquares = 0;
    int count = 0;

    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < topComponents; j++) {
            sumSquares += ReducedMatrix[i][j] * ReducedMatrix[i][j];
            count++;
        }
    }
    return sqrt(sumSquares / count); // Standard deviation as threshold
}

// Smooth signals to reduce noise
function smoothSignals(int topComponents) {
    for (int i = 0; i < PAIRS; i++) {
        smoothedSignals[i] = SMA(series(ReducedMatrix[i][0]), lookback); // Smooth first component
    }
}

// Trade logic based on Kernel PCA-reduced components
function tradeWithKernelPCA(int topComponents) {
    for (int i = 0; i < PAIRS; i++) {
        if (abs(smoothedSignals[i]) > dynamicThreshold) {
            if (smoothedSignals[i] > 0) {
                enterLong(CurrencyPairs[i]);
            } else {
                enterShort(CurrencyPairs[i]);
            }
        }
    }
}

// Main trading function
function run() {
    set(PLOTNOW);

    calculateVolatilities();          // Step 1: Calculate volatilities
    calculateVolatilityMatrix();      // Step 2: Compute volatility matrix

    // Step 3: Compute kernel matrix
    calculateKernelMatrix(VolatilityMatrix, kernelMatrix, sigma);

    // Step 4: Perform Kernel PCA
    performKernelPCA(kernelMatrix, eigenvalues, eigenvectors);

    // Step 5: Optimize the number of components based on variance explained
    int optimalComponents = optimizeComponents(eigenvalues, PAIRS, 0.90);

    // Step 6: Reduce data using the top principal components
    reduceKernelData(kernelMatrix, eigenvectors, ReducedMatrix, optimalComponents);

    // Step 7: Calculate dynamic threshold
    dynamicThreshold = calculateDynamicThreshold(optimalComponents);

    // Step 8: Smooth signals for stability
    smoothSignals(optimalComponents);

    // Step 9: Execute trades based on Kernel PCA-reduced features
    tradeWithKernelPCA(optimalComponents);
}

Last edited by TipmyPip; 01/07/25 12:51.
Kernel Volatility Arbitrage Enigma [Re: TipmyPip] #488511
01/02/25 09:36
01/02/25 09:36
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
You are tasked with solving a nonlinear, multi-dimensional volatility arbitrage problem. Your goal is to design a strategy that detects complex relationships between currency pair volatilities using Kernel PCA and neural networks. The relationships between volatilities are highly entangled and nonlinear, requiring advanced mathematical techniques.

The Problem
Volatility Evolution: Each currency pair 𝐶𝑖 has a volatility 𝑉𝑖(𝑡), defined as:

V_i(t) = alpha_i * sin((pi / 2) * V_j(t-1)) + beta_i * cos((pi / 3) * V_k(t-2)) + gamma_i + epsilon_i(t)

Where:

𝑗!=𝑘!=𝑖, and 𝑗,𝑘∈[1,𝑁], with 𝑁=28 currency pairs.
𝛼𝑖,𝛽𝑖,𝛾𝑖 are coefficients based on historical data.
𝜖𝑖(𝑡)∼𝑁(0,𝜎2)ϵ i
​ (t)∼N(0,σ2) is Gaussian noise.

Kernel Transformation: The volatility spreads are mapped into a high-dimensional kernel space:

K_ij(t) = exp(-((V_i(t) - V_j(t))^2) / (2 * sigma^2))

Where:

𝐾𝑖𝑗(𝑡) is the similarity measure between volatilities 𝑉𝑖 and 𝑉𝑗.
𝜎 is the kernel width.
Principal Component Analysis (PCA): Decompose the kernel matrix
𝐾(𝑡) into eigenvalues and eigenvectors:

K(t) = sum_{k=1}^N (lambda_k * (v_k @ v_k'))

Extract the top 𝑚-principal components that explain at least
90% of the variance.

Noise-Induced Drift: Eigenvalues experience stochastic drift:

lambda_k'(t) = lambda_k(t) * (1 + eta_k(t))

Where:

𝜂𝑘(𝑡)∼𝑁(0,𝑙𝑎𝑚𝑏𝑑𝑎 𝑘(𝑡)∗𝑛𝑢)​
(t)∼N(0,lambda k(t)∗nu).
𝑛𝑢 is the noise scaling factor.
Reduced Data: Project the kernel matrix onto the top
𝑚 principal components:

R_i(t) = sum_{k=1}^m (dot(K_i(t), v_k) * v_k)

Dynamic Threshold: Neural networks predict thresholds for trade execution:

Theta_i(t) = NeuralNet(K_i(t), R_i(t))

Trade Signal: Normalize the reduced data and execute trades based on the signal:

Signal(C_i) = R_i(t) / sqrt(sum_{j=1}^N R_j(t)^2)

Trades are executed when:

abs(Signal(C_i)) > Theta_i(t)

Additional Complexity Dynamic Kernel Width:
Allow 𝜎 to adapt dynamically based on volatility clustering:

sigma(t) = sigma_0 * (1 + kappa * StdDev(V(t)))

Component Selection: Use a second neural network to optimize the number of components 𝑚:

m_opt = NeuralNet_Components(K(t), lambda(t), eigenvectors)

Cross-Asset Correlations: Introduce equities, bonds, or commodities to influence 𝑉𝑖(𝑡).

Mathematical Summary
Volatility Dynamics:

V_i(t) = alpha_i * sin((pi / 2) * V_j(t-1)) + beta_i * cos((pi / 3) * V_k(t-2)) + gamma_i + epsilon_i(t)

Kernel Matrix:

K_ij(t) = exp(-((V_i(t) - V_j(t))^2) / (2 * sigma^2))

Kernel PCA Decomposition:

K(t) = sum_{k=1}^N (lambda_k * (v_k @ v_k'))

Projected Data:

R_i(t) = sum_{k=1}^m (dot(K_i(t), v_k) * v_k)

Dynamic Threshold:

Theta_i(t) = NeuralNet(K_i(t), R_i(t))

Trade Signal:

Signal(C_i) = R_i(t) / sqrt(sum_{j=1}^N R_j(t)^2)

Objective
Simulate the market with 𝑁=28 currency pairs and 1000 ticks.
Train neural networks to predict thresholds (𝑇ℎ𝑒𝑡𝑎(𝑡)) and optimize components (𝑚).
Execute the strategy and maximize the Sharpe ratio while maintaining a maximum drawdown below 5%.


Code
#define PAIRS 28 // Number of currency pairs

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars kernelMatrix[PAIRS][PAIRS];     // Kernel matrix for Kernel PCA
vars ReducedMatrix[PAIRS][PAIRS];    // Reduced matrix for principal components
vars Thresholds[PAIRS];              // Neural network predicted thresholds
vars smoothedSignals[PAIRS];         // Smoothed signals for risk control
vars Predictions[PAIRS];             // Neural network predictions
vars volatilities[PAIRS];            // Volatility for each pair
vars eigenvalues[PAIRS];             // Eigenvalues from PCA
vars eigenvectors[PAIRS][PAIRS];     // Eigenvectors from PCA
int lookback = 50;                   // Lookback period for volatility calculation
int NeuralModelThreshold;            // Handle for neural network predicting thresholds
int NeuralModelSigma;                // Handle for neural network predicting kernel width

var sigma = 0.5;                     // Default kernel width parameter
var dynamicThreshold;                // Dynamic trading threshold

// Function to calculate volatilities for all pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i]), lookback));
    }
}

// Function to calculate the kernel matrix using a Gaussian kernel
function calculateKernelMatrix(vars volatilities[PAIRS], vars kernelMatrix[PAIRS][PAIRS], var sigma) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix[i][j] = exp(-pow(volatilities[i] - volatilities[j], 2) / (2 * pow(sigma, 2))); // Gaussian kernel
        }
    }
}

// Perform Kernel PCA: Decompose the kernel matrix into eigenvalues and eigenvectors
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars eigenvalues, vars eigenvectors) {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors); // Decompose the kernel matrix
}

// Reduce data using the top principal components
function reduceKernelData(vars kernelMatrix[PAIRS][PAIRS], vars eigenvectors[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS], int numComponents) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < numComponents; j++) {
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Neural network training function for dynamic threshold prediction
function trainNeuralNetworks() {
    // Train for thresholds
    LayerPerceptron(10); // 10 nodes in hidden layer
    LayerNormalize();
    LayerPerceptron(1);  // Output layer for threshold prediction
    NeuralModelThreshold = Train(
        "threshold_model", // Model name
        Features,          // Input features (kernel matrix and volatilities)
        Targets,           // Target outputs (thresholds from historical data)
        NumSamples         // Number of samples
    );

    // Train for sigma adjustment
    LayerPerceptron(10); // 10 nodes in hidden layer
    LayerNormalize();
    LayerPerceptron(1);  // Output layer for kernel width (sigma) prediction
    NeuralModelSigma = Train(
        "sigma_model",    // Model name
        Features,         // Input features (historical volatilities and returns)
        Targets,          // Target outputs (optimal sigma values)
        NumSamples        // Number of samples
    );
}

// Predict dynamic thresholds using the neural network
function predictThresholds(vars kernelMatrix[PAIRS][PAIRS], vars Thresholds[PAIRS]) {
    for (int i = 0; i < PAIRS; i++) {
        Thresholds[i] = Predict(NeuralModelThreshold, kernelMatrix[i]); // Predict for each row in kernel matrix
    }
}

// Predict dynamic sigma using the neural network
function predictSigma(vars volatilities[PAIRS]) {
    return Predict(NeuralModelSigma, volatilities); // Predict sigma dynamically
}

// Calculate a dynamic threshold based on reduced signals
function calculateDynamicThreshold(int topComponents) {
    var sumSquares = 0;
    int count = 0;

    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < topComponents; j++) {
            sumSquares += ReducedMatrix[i][j] * ReducedMatrix[i][j];
            count++;
        }
    }
    return sqrt(sumSquares / count); // Standard deviation as threshold
}

// Smooth signals to reduce noise
function smoothSignals(vars Predictions[PAIRS], vars smoothedSignals[PAIRS]) {
    for (int i = 0; i < PAIRS; i++) {
        smoothedSignals[i] = SMA(series(Predictions[i]), lookback);
    }
}

// Trade logic with neural network-predicted thresholds
function tradeWithNeuralNetwork(vars smoothedSignals[PAIRS], vars Thresholds[PAIRS]) {
    for (int i = 0; i < PAIRS; i++) {
        if (smoothedSignals[i] > Thresholds[i]) {
            enterLong(CurrencyPairs[i]);
        } else if (smoothedSignals[i] < -Thresholds[i]) {
            enterShort(CurrencyPairs[i]);
        }
    }
}

// Main trading function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate volatilities
    calculateVolatilities();

    // Step 2: Predict sigma using the neural network
    sigma = predictSigma(volatilities);

    // Step 3: Compute kernel matrix
    calculateKernelMatrix(volatilities, kernelMatrix, sigma);

    // Step 4: Perform Kernel PCA
    performKernelPCA(kernelMatrix, eigenvalues, eigenvectors);

    // Step 5: Optimize the number of components based on variance explained
    int optimalComponents = optimizeComponents(eigenvalues, PAIRS, 0.90);

    // Step 6: Reduce data using the top principal components
    reduceKernelData(kernelMatrix, eigenvectors, ReducedMatrix, optimalComponents);

    // Step 7: Predict thresholds using the neural network
    predictThresholds(kernelMatrix, Thresholds);

    // Step 8: Generate predictions (e.g., signal strength)
    for (int i = 0; i < PAIRS; i++) {
        Predictions[i] = dotProduct(kernelMatrix[i], Thresholds);
    }

    // Step 9: Smooth predictions for stable signals
    smoothSignals(Predictions, smoothedSignals);

    // Step 10: Execute trades based on predictions and thresholds
    tradeWithNeuralNetwork(smoothedSignals, Thresholds);
}

Last edited by TipmyPip; 01/02/25 09:37.
The Volatility Feedback Arbitrage [Re: TipmyPip] #488512
01/02/25 10:10
01/02/25 10:10
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Problem Context You are managing a portfolio of 𝑁=28 currency pairs, denoted as 𝐶1,𝐶2,…,𝐶𝑁. Your goal is to identify volatility arbitrage opportunities by analyzing volatility spreads and return correlations, projecting them into a nonlinear feature space, and recursively refining the results to adapt to market dynamics.

Market Dynamics
1. Volatility Spread Calculation The volatility spread between any two currency pairs 𝐶𝑖 and 𝐶𝑗 is given by:

V_ij(t) = sigma_i(t) - sigma_j(t),

where:

𝑠𝑖𝑔𝑚𝑎𝑖(𝑡): Rolling standard deviation of currency pair 𝐶𝑖 over the past 𝐿 time steps.
𝑉𝑖𝑗(𝑡): The relative volatility between 𝐶𝑖 and 𝐶𝑗.
2. Return Correlation The return correlation between 𝐶𝑖 and 𝐶𝑗 evolves according to:

rho_ij(t+1) = rho_ij(t) + eta_ij(t),

where:

𝑟ℎ𝑜𝑖𝑗(𝑡): Pearson correlation coefficient between the returns of 𝐶𝑖 and 𝐶𝑗.
𝑒𝑡𝑎𝑖𝑗(𝑡)∼𝑁(0,𝑛𝑢2): Gaussian noise representing market shocks.

Kernel Transformation
To capture nonlinear relationships, both the volatility spread matrix (𝑉) and the correlation matrix (𝑟ℎ𝑜) are projected into a high-dimensional feature space using Gaussian kernels.

Volatility Kernel:

K^(V)_ij = exp(-((V_ij - V_kl)^2) / (2 * sigma_V^2)),

where 𝑠𝑖𝑔𝑚𝑎𝑉 is the kernel width for volatility features.

Correlation Kernel:

K^(rho)_ij = exp(-((rho_ij - rho_kl)^2) / (2 * sigma_rho^2)),

where 𝑠𝑖𝑔𝑚𝑎𝑟ℎ𝑜 is the kernel width for correlation features.

Recursive Feedback Mechanism
The reduced features from each kernel matrix influence the other in a feedback loop:

Feedback for Volatility Kernel:

K^(V)_ij <- K^(V)_ij + lambda * R^(rho)_ij,

where:

𝑅(𝑟ℎ𝑜)𝑖𝑗: Reduced features from the correlation kernel matrix
𝐾(𝑟ℎ𝑜).

Feedback for Correlation Kernel:
K^(rho)_ij <- K^(rho)_ij + lambda * R^(V)_ij,

where:

𝑅(𝑉)𝑖𝑗​: Reduced features from the volatility kernel matrix 𝐾(𝑉).

Kernel PCA
Each kernel matrix (𝐾(𝑉), 𝐾(𝑟ℎ𝑜) is decomposed using Kernel PCA:

K(t) = sum_{k=1}^m lambda_k * (v_k @ v_k'),

where:

𝑙𝑎𝑚𝑏𝑑𝑎𝑘 : Eigenvalues of the kernel matrix.
𝑣𝑘 : Eigenvectors of the kernel matrix.
𝑚: Number of principal components that explain >=90 of the variance.
The reduced feature matrices are:

R^(V) = sum_{k=1}^m (lambda_k * v_k),
R^(rho) = sum_{k=1}^m (lambda_k * v_k).

Neural Network Predictions
Dynamic Thresholds: Two neural networks predict dynamic thresholds for volatility (𝑇ℎ𝑒𝑡𝑎(𝑉)) and correlation (𝑇ℎ𝑒𝑡𝑎(𝑟ℎ𝑜)):

Theta^(V)_ij = NN_1(R^(V)_ij, context),
Theta^(rho)_ij = NN_2(R^(rho)_ij, context).

Meta-Neural Network: A third neural network combines these predictions to generate final trade signals:

S_ij = MetaNN(Theta^(V)_ij, Theta^(rho)_ij, R^(V)_ij, R^(rho)_ij).

Trade Execution

Signal Normalization: Normalize the signals:

S^_ij = S_ij / sqrt(sum_{k,l} S_kl^2),

ensuring that trade magnitudes are proportional to signal strength.

Trade Conditions: Execute a trade when:

abs(S^_ij) > Theta, where 𝑇ℎ𝑒𝑡𝑎 is a global threshold, dynamically adjusted based on portfolio volatility.

Optimization Goals

Your task is to design a strategy that:

Maximizes the Sharpe Ratio:

Sharpe Ratio = (Mean(Returns) - Risk-Free Rate) / StdDev(Returns).

Minimizes Maximum Drawdown:

Max Drawdown = max(Peak - Trough),

ensuring drawdown stays below 5
Explains Variance in PCA: Ensure 𝑚 components explain at least 90 of the variance:

sum_{k=1}^m lambda_k / sum_{k=1}^N lambda_k >= 0.9.

Complete Problem Workflow

Step 1: Calculate Volatility Spread:

V_ij(t) = sigma_i(t) - sigma_j(t)

Step 2: Update Correlations:

rho_ij(t+1) = rho_ij(t) + eta_ij(t)

Step 3: Compute Kernel Matrices:

Volatility Kernel:

K^(V)_ij = exp(-((V_ij - V_kl)^2) / (2 * sigma_V^2))

Correlation Kernel:

K^(rho)_ij = exp(-((rho_ij - rho_kl)^2) / (2 * sigma_rho^2))

Step 4: Perform Feedback Updates:

Volatility Feedback:

K^(V)_ij <- K^(V)_ij + lambda * R^(rho)_ij

Correlation Feedback:

K^(rho)_ij <- K^(rho)_ij + lambda * R^(V)_ij

Step 5: Decompose Using Kernel PCA:

K = sum_{k=1}^m lambda_k * (v_k @ v_k')

Step 6: Predict Thresholds and Signals:

Dynamic Thresholds:

Theta^(V)_ij = NN_1(R^(V)_ij, context)
Theta^(rho)_ij = NN_2(R^(rho)_ij, context)

Meta-Signal:

S_ij = MetaNN(Theta^(V)_ij, Theta^(rho)_ij, R^(V)_ij, R^(rho)_ij)

Step 7: Execute Trades:

Normalize Signals:

S^_ij = S_ij / sqrt(sum_{k,l} S_kl^2)

Trade Decision:

if abs(S^_ij) > Theta: Execute Trade



Code
#define PAIRS 28 // Number of currency pairs

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars volatilities[PAIRS];             // Volatility for each pair
vars correlations[PAIRS];             // Correlations for each pair
vars kernelMatrix1[PAIRS][PAIRS];     // Kernel matrix for PCA-1
vars kernelMatrix2[PAIRS][PAIRS];     // Kernel matrix for PCA-2
vars ReducedMatrix1[PAIRS][PAIRS];    // Reduced matrix for PCA-1
vars ReducedMatrix2[PAIRS][PAIRS];    // Reduced matrix for PCA-2
vars FeedbackMatrix1[PAIRS];          // Feedback-influenced matrix for PCA-1
vars FeedbackMatrix2[PAIRS];          // Feedback-influenced matrix for PCA-2
vars Threshold1[PAIRS];               // Thresholds from NN-1
vars Threshold2[PAIRS];               // Thresholds from NN-2
vars MetaFeatures[PAIRS];             // Meta-features for the meta neural network
vars FinalSignals[PAIRS];             // Final signals from the meta neural network
int lookback = 50;                    // Lookback period
int NN1, NN2, MetaNN;                 // Neural network handles
var lambda = 0.5;                     // Cross-influence weight
var sigma1 = 0.5;                     // Initial kernel width for PCA-1
var sigma2 = 0.5;                     // Initial kernel width for PCA-2

// Step 1: Calculate volatilities and correlations
function calculateFeatures() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
        correlations[i] = priceClose(CurrencyPairs[i]) - priceOpen(CurrencyPairs[i]); // Correlation proxy
    }
}

// Step 2: Calculate kernel matrices with initial parameters
function calculateKernelMatrices() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix1[i][j] = exp(-(pow(volatilities[i] - volatilities[j], 2)) / (2 * pow(sigma1, 2)));
            kernelMatrix2[i][j] = exp(-(pow(correlations[i] - correlations[j], 2)) / (2 * pow(sigma2, 2)));
        }
    }
}

// Step 3: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars eigenvalues, vars eigenvectors) {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
}

// Step 4: Reduce kernel data
function reduceKernelData(vars kernelMatrix[PAIRS][PAIRS], vars eigenvectors[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS], int components) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < components; j++) {
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 5: Apply feedback adjustments
function applyFeedbackAdjustments() {
    for (int i = 0; i < PAIRS; i++) {
        FeedbackMatrix1[i] = dotProduct(ReducedMatrix2[i], ReducedMatrix1[i]); // PCA-1 influenced by PCA-2
        FeedbackMatrix2[i] = dotProduct(ReducedMatrix1[i], ReducedMatrix2[i]); // PCA-2 influenced by PCA-1
    }
}

// Step 6: Train and predict neural networks
function trainNeuralNetworks() {
    // Train NN-1
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN1 = Train("NN1", ReducedMatrix1, Threshold1, PAIRS);

    // Train NN-2
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN2 = Train("NN2", ReducedMatrix2, Threshold2, PAIRS);

    // Train Meta Neural Network
    LayerPerceptron(5);
    LayerNormalize();
    LayerPerceptron(1);
    MetaNN = Train("MetaNN", [Threshold1, Threshold2, FeedbackMatrix1, FeedbackMatrix2], FinalSignals, PAIRS);
}

function predictSignalsAndThresholds() {
    for (int i = 0; i < PAIRS; i++) {
        Threshold1[i] = Predict(NN1, FeedbackMatrix1[i]);
        Threshold2[i] = Predict(NN2, FeedbackMatrix2[i]);

        // Meta Neural Network combines predictions
        MetaFeatures[i] = [Threshold1[i], Threshold2[i], FeedbackMatrix1[i], FeedbackMatrix2[i]];
        FinalSignals[i] = Predict(MetaNN, MetaFeatures[i]);
    }
}

// Step 7: Execute trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (FinalSignals[i] > 0.5) {
            enterLong(CurrencyPairs[i]);
        } else if (FinalSignals[i] < -0.5) {
            enterShort(CurrencyPairs[i]);
        }
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate features
    calculateFeatures();

    // Step 2: Compute initial kernel matrices
    calculateKernelMatrices();

    // Step 3: Perform Kernel PCA
    vars eigenvalues1, eigenvectors1;
    vars eigenvalues2, eigenvectors2;
    performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
    performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);

    // Step 4: Reduce data
    reduceKernelData(kernelMatrix1, eigenvectors1, ReducedMatrix1, 3); // Top 3 components
    reduceKernelData(kernelMatrix2, eigenvectors2, ReducedMatrix2, 3);

    for (int iter = 0; iter < 5; iter++) { // Recursive iterations
        // Step 5: Apply feedback adjustments
        applyFeedbackAdjustments();

        // Step 6: Recompute kernel matrices with feedback
        calculateKernelMatrices();

        // Step 7: Perform Kernel PCA again
        performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
        performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);

        // Step 8: Predict thresholds and signals
        predictSignalsAndThresholds();

        // Step 9: Execute trades
        executeTrades();
    }
}

Kernelized Profitability Arbitrage [Re: TipmyPip] #488513
01/02/25 10:39
01/02/25 10:39
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Overview
You are tasked with designing a multi-layer volatility arbitrage strategy for a portfolio of 28 currency pairs. The strategy leverages Kernel PCA to extract latent structures in pairwise volatility relationships and their interplay with profitability signals. The challenge is to optimize the combination of kernel components to maximize risk-adjusted profitability while managing noise and feedback loops between dependent volatility and profitability spaces.

Problem Statement
Volatility Pair Dynamics: Each pair 𝐶𝑖,𝐶𝑗 exhibits a volatility relationship:

V_{i,j}(t) = |σ_i(t) - σ_j(t)|,

where 𝜎𝑖(𝑡) (t) is the volatility of currency pair 𝐶𝑖, computed as:

σ_i(t) = StdDev(P_i(t), \text{lookback}), and 𝑃𝑖(𝑡) is the price series of 𝐶𝑖.

Profitability Metric: For each pair combination
(𝑖,𝑗), define a profitability measure Π𝑖,𝑗(𝑡):

Π_{i,j}(t) = |R_i(t) - R_j(t)|, where 𝑅𝑖(𝑡) is the return:

R_i(t) = P_i(t) / P_i(t-1) - 1.

Kernel Transformation: Use a Gaussian kernel to map volatility and profitability measures into high-dimensional spaces:

K_{V,ij}(t) = exp(- (V_{i,j}(t) - V_{k,l}(t))^2 / (2 * σ_V^2)),
K_{Π,ij}(t) = exp(- (Π_{i,j}(t) - Π_{k,l}(t))^2 / (2 * σ_Π^2)).

Principal Component Extraction: Decompose the kernel matrices
𝐾𝑉 and 𝐾Π into their eigenvalues 𝜆𝑘​ and eigenvectors 𝑣𝑘​ using:

K = Σ_{k=1}^N λ_k * (v_k ⊗ v_k), where 𝑁=378 is the number of pair combinations.

Feedback Loop: The reduced components 𝑅𝑉 and 𝑅Π​ are recursively coupled:

R_{V,i}(t) = Σ_{k=1}^m (dot(K_{V,i}, v_k) * R_{Π,k}(t)),
R_{Π,i}(t) = Σ_{k=1}^m (dot(K_{Π,i}, v_k) * R_{V,k}(t)).

Neural Network Predictions: Train two neural networks to predict dynamic thresholds for trade signals:

Θ𝑉(𝑡) based on 𝑅𝑉 (volatility components).
ΘΠ(𝑡) based on 𝑅Π (profitability components).

Use a meta neural network to combine these predictions:

Θ_{final}(t) = MetaNN(Θ_V(t), Θ_Π(t)).

Trade Execution: Trades are executed based on normalized signals:

S_{i,j}(t) = R_{V,i}(t) / sqrt(Σ_{k=1}^N R_{V,k}(t)^2), with the condition:

|S_{i,j}(t)| > Θ_{final}(t).

Puzzle Constraints

Variance Explained: Select 𝑚, the number of top components, such that:

Σ_{k=1}^m λ_k / Σ_{k=1}^N λ_k ≥ 0.90.

Dynamic Kernel Widths: Adapt kernel widths 𝜎𝑉 and 𝜎Π dynamically:

σ_V(t) = σ_V(0) * (1 + κ * StdDev(V(t))),
σ_Π(t) = σ_Π(0) * (1 + κ * StdDev(Π(t))).

Risk-Adjusted Profitability: Optimize the Sharpe ratio:

Sharpe = E[Π_{i,j}(t)] / StdDev(Π_{i,j}(t)).

Feedback Convergence: Ensure that feedback loops between 𝑅𝑉 and 𝑅Π converge within 10 iterations:

max(|R_V^{(n)} - R_V^{(n-1)}|, |R_Π^{(n)} - R_Π^{(n-1)}|) < ε.

Your Tasks Kernel PCA and Neural Networks:

Implement the kernel matrices 𝐾𝑉 and 𝐾Π. Extract 𝑚-principal components for both matrices.
Train neural networks 𝑁𝑁1, 𝑁𝑁2, and MetaNN.

Recursive Feedback: Establish recursive coupling between 𝑅𝑉 V and 𝑅Π.

Ensure convergence within the specified tolerance.
Profitability Optimization:

Optimize the selection of pair combinations to maximize the cumulative profitability.

Backtesting:

Simulate the strategy over 10,000 ticks and report: Sharpe ratio. Maximum drawdown. Trade frequency.

Code
#define PAIRS 28 // Number of currency pairs
#define COMBINATIONS 378 // Total number of unique pair combinations

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars volatilities[PAIRS];             // Volatility for each pair
vars volatilityRatios[COMBINATIONS]; // Volatility ratios for pair combinations
vars kernelMatrix1[COMBINATIONS][COMBINATIONS]; // Kernel matrix for PCA-1
vars kernelMatrix2[COMBINATIONS][COMBINATIONS]; // Kernel matrix for PCA-2
vars ReducedMatrix1[COMBINATIONS][COMBINATIONS]; // Reduced matrix for PCA-1
vars ReducedMatrix2[COMBINATIONS][COMBINATIONS]; // Reduced matrix for PCA-2
vars profitabilityMatrix[COMBINATIONS]; // Profitability matrix for pair combinations
vars Threshold1[COMBINATIONS];        // Thresholds from NN-1
vars Threshold2[COMBINATIONS];        // Thresholds from NN-2
vars MetaFeatures[COMBINATIONS];      // Meta-features for MetaNN
vars FinalSignals[COMBINATIONS];      // Final trade signals
int combinationIndex[COMBINATIONS][2]; // Index mapping for combinations
int NN1, NN2, MetaNN;                 // Neural network handles
int lookback = 50;                    // Lookback period

// Step 1: Calculate volatilities for all currency pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
}

// Step 2: Generate all pair combinations
function generateCombinations() {
    int index = 0;
    for (int i = 0; i < PAIRS - 1; i++) {
        for (int j = i + 1; j < PAIRS; j++) {
            combinationIndex[index][0] = i; // First pair in the combination
            combinationIndex[index][1] = j; // Second pair in the combination
            index++;
        }
    }
}

// Step 3: Calculate volatility ratios for all combinations
function calculateVolatilityRatios() {
    for (int k = 0; k < COMBINATIONS; k++) {
        int i = combinationIndex[k][0];
        int j = combinationIndex[k][1];
        volatilityRatios[k] = abs(volatilities[i] - volatilities[j]); // Volatility difference
    }
}

// Step 4: Compute kernel matrices
function calculateKernelMatrices(var sigma1, var sigma2) {
    for (int i = 0; i < COMBINATIONS; i++) {
        for (int j = 0; j < COMBINATIONS; j++) {
            kernelMatrix1[i][j] = exp(-pow(volatilityRatios[i] - volatilityRatios[j], 2) / (2 * pow(sigma1, 2)));
            kernelMatrix2[i][j] = exp(-pow(profitabilityMatrix[i] - profitabilityMatrix[j], 2) / (2 * pow(sigma2, 2)));
        }
    }
}

// Step 5: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[COMBINATIONS][COMBINATIONS], vars eigenvalues, vars eigenvectors) {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
}

// Step 6: Reduce kernel data
function reduceKernelData(vars kernelMatrix[COMBINATIONS][COMBINATIONS], vars eigenvectors[COMBINATIONS][COMBINATIONS], vars ReducedMatrix[COMBINATIONS][COMBINATIONS], int components) {
    for (int i = 0; i < COMBINATIONS; i++) {
        for (int j = 0; j < components; j++) {
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 7: Train neural networks
function trainNeuralNetworks() {
    // Train NN-1
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN1 = Train("NN1", ReducedMatrix1, Threshold1, COMBINATIONS);

    // Train NN-2
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN2 = Train("NN2", ReducedMatrix2, Threshold2, COMBINATIONS);

    // Train Meta Neural Network
    LayerPerceptron(5);
    LayerNormalize();
    LayerPerceptron(1);
    MetaNN = Train("MetaNN", [Threshold1, Threshold2], FinalSignals, COMBINATIONS);
}

// Step 8: Predict thresholds and signals
function predictThresholdsAndSignals() {
    for (int i = 0; i < COMBINATIONS; i++) {
        Threshold1[i] = Predict(NN1, ReducedMatrix1[i]);
        Threshold2[i] = Predict(NN2, ReducedMatrix2[i]);

        // Meta Neural Network combines predictions
        MetaFeatures[i] = [Threshold1[i], Threshold2[i]];
        FinalSignals[i] = Predict(MetaNN, MetaFeatures[i]);
    }
}

// Step 9: Execute trades
function executeTrades() {
    for (int i = 0; i < COMBINATIONS; i++) {
        int pair1 = combinationIndex[i][0];
        int pair2 = combinationIndex[i][1];

        // Example trade logic based on meta signal
        if (FinalSignals[i] > 0.5) {
            enterLong(CurrencyPairs[pair1]);
            enterShort(CurrencyPairs[pair2]);
        } else if (FinalSignals[i] < -0.5) {
            enterShort(CurrencyPairs[pair1]);
            enterLong(CurrencyPairs[pair2]);
        }
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate volatilities
    calculateVolatilities();

    // Step 2: Generate pair combinations
    generateCombinations();

    // Step 3: Calculate volatility ratios
    calculateVolatilityRatios();

    // Step 4: Compute kernel matrices
    calculateKernelMatrices(0.5, 0.5); // Example sigma values

    // Step 5: Perform Kernel PCA
    vars eigenvalues1, eigenvectors1;
    vars eigenvalues2, eigenvectors2;
    performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
    performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);

    // Step 6: Reduce kernel data
    reduceKernelData(kernelMatrix1, eigenvectors1, ReducedMatrix1, 3); // Top 3 components
    reduceKernelData(kernelMatrix2, eigenvectors2, ReducedMatrix2, 3);

    // Step 7: Train neural networks
    trainNeuralNetworks();

    // Step 8: Predict thresholds and signals
    predictThresholdsAndSignals();

    // Step 9: Execute trades
    executeTrades();
}

Recursive Kernel PCA with GNN for Profitability Optimization [Re: TipmyPip] #488514
01/02/25 12:39
01/02/25 12:39
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Problem: Recursive Kernel PCA with GNN for Profitability Optimization

You are tasked to design a trading strategy that integrates two Kernel PCAs (for volatility and profitability relationships) with a Graph Neural Network (GNN). The strategy dynamically updates node embeddings and kernel matrices to extract dominant patterns and optimize trading signals for a portfolio of 𝑛=28 currency pairs.

The goal is to maximize profitability Π, subject to market dynamics and constraints.

Step 1: Graph Construction
Graph Definition: Let the currency pairs be represented as a graph 𝐺=(𝑉,𝐸), where:

𝑉: Nodes, 𝑣𝑖 , represent currency pairs.
𝐸: Edges represent relationships between pairs.
Node Features: Each node 𝑣𝑖 is assigned a feature vector 𝑥𝑖, defined as:

x_i = [σ_i(t), R_i(t), M_i(t), ρ_{i,j}(t)]

where:

𝜎𝑖(𝑡): Volatility of 𝐶𝑖,
𝑅𝑖(𝑡): Return of 𝐶𝑖,𝑀𝑖(𝑡): Momentum of 𝐶𝑖,
𝜌𝑖,𝑗(𝑡): Correlation between 𝐶𝑖 and 𝐶𝑗.

Edge Weights: The weighted adjacency matrix 𝐴 is given by:

A[i][j] = exp(-||x_i - x_j||^2 / (2 * σ^2))

where 𝜎 is a kernel width parameter.

Step 2: Kernel Matrices

Volatility Kernel
𝐾𝑉 : Construct 𝐾𝑉K using a Gaussian kernel:

K_V[i][j] = exp(- (V_{i,j}(t) - V_{k,l}(t))^2 / (2 * σ_V^2))

where 𝑉𝑖,𝑗(𝑡)=∣𝜎𝑖(𝑡)−𝜎𝑗(𝑡)∣ is the volatility spread.

Profitability Kernel 𝐾Π​ : Construct 𝐾Π as:

K_Π[i][j] = exp(- (Π_{i,j}(t) - Π_{k,l}(t))^2 / (2 * σ_Π^2))

where Π𝑖,𝑗(𝑡)=∣𝑅𝑖(𝑡)−𝑅𝑗(𝑡)∣Π i,j​(t) is the profitability difference.

Eigenvalue Decomposition: Decompose 𝐾𝑉​ and 𝐾Π into 𝜆𝑘 (eigenvalues) and 𝑣𝑘 (eigenvectors):

K = Σ_{k=1}^m λ_k * (v_k ⊗ v_k)

where 𝑚 is the number of principal components.

Step 3: GNN Embedding Propagation
Message Passing: For each edge (𝑖,𝑗), compute the message 𝑚𝑖𝑗​:

m_{ij} = A[i][j] * (W * h_j^{(t)})

where 𝑊 is a weight matrix.

Node Updates: Update node embeddings ℎ𝑖(𝑡+1) using:

h_i^{(t+1)} = ReLU(W * Σ_{j∈N(i)} m_{ij} + b)

Recursive Feedback: Use updated embeddings ℎ𝑖(𝑡+1) to refine the kernel matrices:

K_V[i][j] = f(h_i^{(t+1)}, h_j^{(t+1)})
K_Π[i][j] = g(h_i^{(t+1)}, h_j^{(t+1)})

Step 4: Neural Networks
Threshold Prediction: Train two neural networks:

𝑁𝑁1 : Predicts volatility threshold Θ𝑉(𝑡):

Θ_V(t) = NN_1(R_{V,i}(t))

𝑁𝑁2 : Predicts profitability threshold ΘΠ(𝑡):

Θ_Π(t) = NN_2(R_{Π,i}(t))

Meta Neural Network: Combine Θ𝑉(𝑡) and ΘΠ(𝑡) using a meta network:

Θ_{final}(t) = MetaNN(Θ_V(t), Θ_Π(t))

Step 5: Trade Execution
Signal Calculation: Compute the normalized trade signal 𝑆𝑖,𝑗(𝑡):

S_{i,j}(t) = R_{V,i}(t) / sqrt(Σ_{k=1}^n R_{V,k}(t)^2)

Execution Criteria: Execute a trade if:

|S_{i,j}(t)| > Θ_{final}(t)

Constraints
Variance Explained: Select the top 𝑚 components such that:

Σ_{k=1}^m λ_k / Σ_{k=1}^n λ_k ≥ 0.90

Dynamic Kernel Widths: Update kernel widths dynamically:

σ_V(t) = σ_V(0) * (1 + κ * StdDev(V(t)))
σ_Π(t) = σ_Π(0) * (1 + κ * StdDev(Π(t)))

Feedback Convergence: Ensure feedback loops converge within
𝑡𝑚𝑎𝑥=10 iterations:

max(|K_V^{(t+1)} - K_V^{(t)}|, |K_Π^{(t+1)} - K_Π^{(t)}|) < ε

Goal Maximize cumulative profitability Π:

Π = Σ_{t=1}^T Σ_{i,j} (S_{i,j}(t) * Trade_{i,j}(t))

subject to constraints on variance explained, kernel widths, and feedback convergence.

Code
#define PAIRS 28
#define COMBINATIONS 378

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars volatilities[PAIRS];             // Volatility for each pair
vars profitability[COMBINATIONS];    // Profitability for each pair combination
vars adjacencyMatrix[PAIRS][PAIRS];  // GNN adjacency matrix
vars nodeEmbeddings[PAIRS][5];       // Node embeddings from GNN
vars kernelMatrix1[PAIRS][PAIRS];    // Kernel matrix for PCA-1 (volatility)
vars kernelMatrix2[PAIRS][PAIRS];    // Kernel matrix for PCA-2 (profitability)
vars ReducedMatrix1[PAIRS][PAIRS];   // Reduced components from PCA-1
vars ReducedMatrix2[PAIRS][PAIRS];   // Reduced components from PCA-2
vars Threshold1[PAIRS];              // Thresholds from NN-1
vars Threshold2[PAIRS];              // Thresholds from NN-2
vars MetaFeatures[PAIRS];            // Meta-features for MetaNN
vars FinalSignals[PAIRS];            // Final trade signals
int NN1, NN2, MetaNN;                // Neural network handles
int lookback = 50;                   // Lookback period

// Step 1: Calculate volatility and profitability
function calculateMetrics() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
    for (int k = 0; k < COMBINATIONS; k++) {
        int i = k / PAIRS;
        int j = k % PAIRS;
        profitability[k] = abs(priceClose(CurrencyPairs[i]) - priceClose(CurrencyPairs[j]));
    }
}

// Step 2: Construct adjacency matrix
function constructAdjacencyMatrix() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            if (i != j) {
                adjacencyMatrix[i][j] = exp(-pow(volatilities[i] - volatilities[j], 2)); // Gaussian kernel
            } else {
                adjacencyMatrix[i][j] = 0;
            }
        }
    }
}

// Step 3: Propagate GNN embeddings
function propagateEmbeddings() {
    vars newEmbeddings[PAIRS][5];
    for (int t = 0; t < 3; t++) { // 3 propagation steps
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < 5; k++) {
                newEmbeddings[i][k] = 0;
                for (int j = 0; j < PAIRS; j++) {
                    newEmbeddings[i][k] += adjacencyMatrix[i][j] * nodeEmbeddings[j][k];
                }
                newEmbeddings[i][k] = ReLU(newEmbeddings[i][k]);
            }
        }
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < 5; k++) {
                nodeEmbeddings[i][k] = newEmbeddings[i][k];
            }
        }
    }
}

// Step 4: Update kernel matrices using GNN embeddings
function updateKernelMatrices() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix1[i][j] = exp(-dotProduct(nodeEmbeddings[i], nodeEmbeddings[j]) / 2); // Volatility kernel
            kernelMatrix2[i][j] = exp(-profitability[i * PAIRS + j] / 2);                     // Profitability kernel
        }
    }
}

// Step 5: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS]) {
    vars eigenvalues, eigenvectors;
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < 3; j++) { // Top 3 components
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 6: Train neural networks
function trainNeuralNetworks() {
    // NN-1: Thresholds from PCA-1
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN1 = Train("NN1", ReducedMatrix1, Threshold1, PAIRS);

    // NN-2: Thresholds from PCA-2
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN2 = Train("NN2", ReducedMatrix2, Threshold2, PAIRS);

    // Meta Neural Network
    LayerPerceptron(5);
    LayerNormalize();
    LayerPerceptron(1);
    MetaNN = Train("MetaNN", [Threshold1, Threshold2], FinalSignals, PAIRS);
}

// Step 7: Execute trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (FinalSignals[i] > 0.5) {
            enterLong(CurrencyPairs[i]);
        } else if (FinalSignals[i] < -0.5) {
            enterShort(CurrencyPairs[i]);
        }
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate metrics
    calculateMetrics();

    // Step 2: Construct adjacency matrix
    constructAdjacencyMatrix();

    // Step 3: Propagate embeddings
    propagateEmbeddings();

    // Step 4: Update kernel matrices
    updateKernelMatrices();

    // Step 5: Perform Kernel PCA
    performKernelPCA(kernelMatrix1, ReducedMatrix1);
    performKernelPCA(kernelMatrix2, ReducedMatrix2);

    // Step 6: Train neural networks
    trainNeuralNetworks();

    // Step 7: Execute trades
    executeTrades();
}

Multi-GNN Recursive Kernel PCA [Re: TipmyPip] #488516
01/02/25 18:41
01/02/25 18:41
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Multi-GNN Recursive Kernel PCA Problem

You are tasked with designing a multi-layer trading strategy based on recursive Kernel PCA and interdependent 𝑁-Layer GNNs to analyze 𝑛=28 currency pairs. Each GNN layer specializes in capturing different graph dynamics (e.g., volatility, profitability, momentum), while layers interact nonlinearly and recursively. The outputs from each GNN layer influence:

The adjacency matrices for the other layers.
The kernel matrices for volatility (𝐾𝑉) and profitability (𝐾Π).
The node embeddings, which are combined and propagated across layers.
The challenge is to optimize the system by dynamically balancing these interactions while maximizing risk-adjusted profitability.

Enhanced Relationships Between 𝑁-Layer GNNs Interdependent GNN Layers
GNN Layer Types:

GNN1 : Models volatility relationships.
GNN2 : Models profitability dynamics.
GNN3 : Models momentum and correlation patterns.

Cross-Layer Interactions:

Outputs from GNN1 dynamically update edge weights in GNN2 :

A_2^{(t+1)}[i][j] = f(A_2^{(t)}[i][j], h_i^{1,(t)}, h_j^{1,(t)}),

where ℎ𝑖1(𝑡) is the embedding of node 𝑖 from GNN1.

Similarly, outputs from GNN2 influence GNN3 :

A_3^{(t+1)}[i][j] = g(A_3^{(t)}[i][j], h_i^{2,(t)}, h_j^{2,(t)}).

The final embeddings from GNN3 recursively update GNN1 :

A_1^{(t+1)}[i][j] = h(A_1^{(t)}[i][j], h_i^{3,(t)}, h_j^{3,(t)}).

Multi-Scale Aggregation:

Node embeddings are aggregated across all 𝑁 layers:

h_i^{final} = Σ_{l=1}^N W_l \cdot h_i^{l,(t)}.

Step-by-Step Mathematical Representation
Step 1: Node and Edge Features
Node Features (𝑥𝑖):

x_i = [\sigma_i(t), R_i(t), M_i(t), \rho_{i,j}(t)],

where:

𝜎𝑖(𝑡): Volatility.
𝑅𝑖(𝑡): Return.
𝑀𝑖(𝑡): Momentum.
𝜌𝑖,𝑗(𝑡): Correlation.
Edge Features (𝑒𝑖𝑗):

e_{ij} = [| \sigma_i(t) - \sigma_j(t) |, | R_i(t) - R_j(t) |, \rho_{i,j}(t)].

Adjacency Matrices:

For layer 𝑙:

A^{(l)}[i][j] = exp(-||x_i - x_j||^2 / (2 * \sigma^{(l)})).

Step 2: Multi-GNN Propagation Message Passing:

For each GNN layer 𝑙:

m_{ij}^{(l)} = A^{(l)}[i][j] * (W^{(l)} * h_j^{(l)}),

Node Update:

h_i^{(l+1)} = ReLU(Σ_{j ∈ N(i)} m_{ij}^{(l)} + b^{(l)}).

Cross-Layer Feedback:

Update edge weights in other layers:

A_{k}^{(t+1)}[i][j] = f(A_k^{(t)}[i][j], h_i^{l,(t)}, h_j^{l,(t)}),

where 𝑘≠𝑙.

Step 3: Kernel PCA
Kernel Updates:

Use embeddings ℎ𝑖𝑓𝑖𝑛𝑎𝑙 to update kernel matrices:

K_V[i][j] = exp(-||h_i^{final} - h_j^{final}||^2 / (2 * \sigma_V^2)),
K_\Pi[i][j] = exp(-||h_i^{final} - h_j^{final}||^2 / (2 * \sigma_\Pi^2)).

Eigenvalue Decomposition:

K = Σ_{k=1}^m λ_k * (v_k ⊗ v_k),

where 𝜆𝑘 and 𝑣𝑘 are eigenvalues and eigenvectors.

Step 4: Recursive Feedback

Recursive Edge Updates:

A^{(t+1)} = f(A^{(t)}, K_V^{(t)}, K_\Pi^{(t)}).

Recursive Kernel Updates:

K_V^{(t+1)} = g(A^{(t+1)}, K_\Pi^{(t)}),
K_\Pi^{(t+1)} = h(A^{(t+1)}, K_V^{(t)}).

Step 5: Neural Networks
Threshold Predictions:

Θ_V(t) = NN_1(R_{V,i}(t)),
Θ_\Pi(t) = NN_2(R_{\Pi,i}(t)).

Meta Neural Network:

Θ_{final}(t) = MetaNN(Θ_V(t), Θ_\Pi(t)).

Step 6: Trade Execution
Signal Calculation:

S_{i,j}(t) = R_{V,i}(t) / sqrt( Σ_{k=1}^n R_{V,k}(t)^2 ).

Execution Condition:

| S_{i,j}(t) | > Θ_{final}(t).

Constraints
Variance Explained:

Σ_{k=1}^m λ_k / Σ_{k=1}^n λ_k ≥ 0.90.

Dynamic Kernel Widths:

σ_V(t) = σ_V(0) * (1 + κ * StdDev(V(t))),
σ_\Pi(t) = σ_\Pi(0) * (1 + κ * StdDev(Π(t))).

Feedback Convergence:

max(|K_V^{(t+1)} - K_V^{(t)}|, |K_\Pi^{(t+1)} - K_\Pi^{(t)}|) < ε.

Objective
Maximize risk-adjusted profitability by:

Extracting dominant volatility and profitability components with Kernel PCA.
Propagating and aggregating embeddings across 𝑁-interdependent GNN layers.
Dynamically refining kernels and thresholds using recursive feedback.


Code
#define PAIRS 28

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars volatilities[PAIRS];             // Volatility for each pair
vars adjacencyMatrices[PAIRS][PAIRS][28];  // Adjacency matrices for 28 GNNs
vars nodeEmbeddings[PAIRS][5][28];    // Node embeddings for 28 GNNs
vars updatedEmbeddings[PAIRS][5];     // Final node embeddings after aggregation
vars kernelMatrix[PAIRS][PAIRS];      // Kernel matrix for PCA
vars eigenvalues[PAIRS];              // Eigenvalues from PCA
vars eigenvectors[PAIRS][PAIRS];      // Eigenvectors from PCA
vars reducedMatrix[PAIRS][3];         // Reduced components from PCA
vars thresholds[PAIRS];               // Thresholds for trade execution
vars signals[PAIRS];                  // Final trading signals
int lookback = 50;
int NN;                               // Neural network handle for threshold prediction
int propagationDepth = 3;             // GNN propagation depth

// Step 1: Calculate volatilities for all pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
}

// Step 2: Construct adjacency matrices for 28 GNNs
function constructAdjacencyMatrices() {
    for (int l = 0; l < 28; l++) { // For each GNN layer
        for (int i = 0; i < PAIRS; i++) {
            for (int j = 0; j < PAIRS; j++) {
                if (i != j) {
                    adjacencyMatrices[i][j][l] = exp(-pow(volatilities[i] - volatilities[j], 2) / (2 * 0.5^2)); // Gaussian kernel
                } else {
                    adjacencyMatrices[i][j][l] = 0; // No self-loops
                }
            }
        }
    }
}

// Step 3: Propagate embeddings for each GNN
function propagateEmbeddings() {
    for (int l = 0; l < 28; l++) { // For each GNN
        for (int t = 0; t < propagationDepth; t++) { // Propagation steps
            vars newEmbeddings[PAIRS][5];
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < 5; k++) {
                    newEmbeddings[i][k] = 0;
                    for (int j = 0; j < PAIRS; j++) {
                        newEmbeddings[i][k] += adjacencyMatrices[i][j][l] * nodeEmbeddings[j][k][l];
                    }
                    newEmbeddings[i][k] = ReLU(newEmbeddings[i][k]);
                }
            }
            // Update embeddings
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < 5; k++) {
                    nodeEmbeddings[i][k][l] = newEmbeddings[i][k];
                }
            }
        }
    }
}

// Step 4: Aggregate embeddings across all GNNs
function aggregateEmbeddings() {
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < 5; k++) {
            updatedEmbeddings[i][k] = 0;
            for (int l = 0; l < 28; l++) {
                updatedEmbeddings[i][k] += nodeEmbeddings[i][k][l];
            }
            updatedEmbeddings[i][k] /= 28; // Average across GNNs
        }
    }
}

// Step 5: Update kernel matrix using aggregated embeddings
function updateKernelMatrix() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix[i][j] = exp(-dotProduct(updatedEmbeddings[i], updatedEmbeddings[j]) / (2 * 0.5^2)); // Gaussian kernel
        }
    }
}

// Step 6: Perform Kernel PCA
function performKernelPCA() {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < 3; j++) { // Top 3 components
            reducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 7: Train neural network for threshold prediction
function trainNeuralNetwork() {
    LayerPerceptron(10);  // Hidden layer
    LayerNormalize();
    LayerPerceptron(1);   // Output layer
    NN = Train("ThresholdNN", reducedMatrix, thresholds, PAIRS);
}

// Step 8: Generate trade signals
function generateSignals() {
    for (int i = 0; i < PAIRS; i++) {
        signals[i] = Predict(NN, reducedMatrix[i]);
    }
}

// Step 9: Execute trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0.5) {
            enterLong(CurrencyPairs[i]);
        } else if (signals[i] < -0.5) {
            enterShort(CurrencyPairs[i]);
        }
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate volatilities
    calculateVolatilities();

    // Step 2: Construct adjacency matrices
    constructAdjacencyMatrices();

    // Step 3: Propagate embeddings for each GNN
    propagateEmbeddings();

    // Step 4: Aggregate embeddings
    aggregateEmbeddings();

    // Step 5: Update kernel matrix
    updateKernelMatrix();

    // Step 6: Perform Kernel PCA
    performKernelPCA();

    // Step 7: Train neural network for thresholds
    trainNeuralNetwork();

    // Step 8: Generate trade signals
    generateSignals();

    // Step 9: Execute trades
    executeTrades();
}

Volatility-Driven Graph Signal Strategy [Re: TipmyPip] #488525
01/07/25 11:17
01/07/25 11:17
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
Problem Description
1. Input Data Each currency pair 𝐶𝑖 for 𝑖=1,2,...,28 has:

Volatility 𝑣𝑖 computed as:
v_i = StdDev(p_i(t), lookback)

where:

𝑝𝑖(𝑡) : Price series of pair 𝐶𝑖, lookback: Window size for the standard deviation.
Adjacency Matrix 𝐴 to model relationships:

A_ij = exp(-((v_i - v_j)^2) / (2 * sigma^2)) for i != j
A_ii = 0

where:

𝑠𝑖𝑔𝑚𝑎: Kernel bandwidth parameter.
2. GNN Propagation Each node embedding 𝐻𝑖(𝑙) at layer 𝑙 is updated using:

H_i^(l+1) = ReLU(Sum_{j=1}^28 A_ij * H_j^(l) * W^(l))

where:

𝐴𝑖𝑗 : Adjacency matrix element,
𝑊(𝑙) : Trainable weight matrix for layer
𝑙,𝑅𝑒𝐿𝑈(𝑥) : Max(0, x).
3. Dimensionality Reduction After 𝐿 GNN layers, embeddings 𝐻𝑖 are reduced in dimensionality:

Kernel PCA Compute the kernel matrix:

K_ij = exp(-(||H_i - H_j||^2) / (2 * sigma^2))

Perform eigenvalue decomposition:

K = V * Lambda * V^T
Project data onto top-k eigenvectors:

Z_i = Sum_{j=1}^k Lambda_j * V_j

Autoencoder PCA Encoder:

Z_i = H_i * W_enc

Decoder:

H_i_hat = Z_i * W_dec

Minimize reconstruction loss:

L = Sum_{i=1}^28 ||H_i - H_i_hat||^2

4. Trading Signals
Using the reduced features 𝑍𝑖, generate trading signals 𝑠𝑖 :

s_i = 1 if Z_i1 > mu_Z + k * sigma_Z
-1 if Z_i1 < mu_Z - k * sigma_Z
0 otherwise

where:

𝑚𝑢𝑍 : Mean of 𝑍𝑖1,
𝑠𝑖𝑔𝑚𝑎𝑍 : StdDev of 𝑍𝑖1,
𝑘 : Threshold multiplier.

Puzzle Questions
Graph Construction:

How does the kernel bandwidth 𝑠𝑖𝑔𝑚𝑎 affect the sparsity of 𝐴𝑖𝑗?

A_ij -> sparse as |v_i - v_j| increases relative to sigma.

Dimensionality Reduction:

What happens if the eigenvalues 𝐿𝑎𝑚𝑏𝑑 𝑎𝑗 decay too quickly in Kernel PCA?

Z_i -> dominated by 1st few components, losing information.

Signal Sensitivity:

How does 𝑘 affect the number of Buy (𝑠𝑖=1) or Sell (𝑠𝑖=−1) trades?

Large k -> fewer trades, high confidence.
Small k -> more trades, lower confidence.

Performance: Evaluate trading performance using:

Sharpe_Ratio = Mean(Returns) / StdDev(Returns)

Code
#define PAIRS 28
#define CHUNK_SIZE 5
#define LATENT_DIM 3

// Currency pairs
string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

// Variables
vars volatilities[PAIRS];
vars adjacencyMatrices[PAIRS][PAIRS];
vars nodeEmbeddings[PAIRS][5];
vars kernelMatrix[PAIRS][PAIRS];
vars eigenvalues[PAIRS];
vars eigenvectors[PAIRS][PAIRS];
vars reducedMatrix[PAIRS][3];
vars cumulativeCovariance[5][5];
vars encoderWeights[5][LATENT_DIM];
vars decoderWeights[LATENT_DIM][5];
vars signals[PAIRS];
double kernelSigma = 0.5;
double thresholdMultiplier = 1.0;
double learningRate = 0.01;
int lookback = 50;
int totalSamples = 0;

// Step 1: Calculate volatilities
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
}

// Step 2: Construct adjacency matrix for GNN
function constructAdjacencyMatrix() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            if (i != j) {
                adjacencyMatrices[i][j] = exp(-pow(volatilities[i] - volatilities[j], 2) / (2 * pow(kernelSigma, 2)));
            } else {
                adjacencyMatrices[i][j] = 0;
            }
        }
    }
}

// Step 3: Propagate embeddings for GNN
function propagateEmbeddings() {
    vars newEmbeddings[PAIRS][5];
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < 5; k++) {
            newEmbeddings[i][k] = 0;
            for (int j = 0; j < PAIRS; j++) {
                newEmbeddings[i][k] += adjacencyMatrices[i][j] * nodeEmbeddings[j][k];
            }
        }
    }
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < 5; k++) {
            nodeEmbeddings[i][k] = ReLU(newEmbeddings[i][k]);
        }
    }
}

// Step 4: Incremental PCA
function updateIncrementalPCA(vars embeddings[PAIRS][5]) {
    for (int i = 0; i < PAIRS; i += CHUNK_SIZE) {
        for (int a = 0; a < 5; a++) {
            for (int b = 0; b < 5; b++) {
                cumulativeCovariance[a][b] = 0;
                for (int j = i; j < i + CHUNK_SIZE && j < PAIRS; j++) {
                    cumulativeCovariance[a][b] += embeddings[j][a] * embeddings[j][b];
                }
            }
        }
        totalSamples += CHUNK_SIZE;
    }
    for (int a = 0; a < 5; a++) {
        for (int b = 0; b < 5; b++) {
            cumulativeCovariance[a][b] /= totalSamples;
        }
    }
}

// Step 5: Autoencoder PCA
function initializeAutoencoder() {
    for (int i = 0; i < 5; i++) {
        for (int j = 0; j < LATENT_DIM; j++) {
            encoderWeights[i][j] = random() * 0.1;
            decoderWeights[j][i] = random() * 0.1;
        }
    }
}

function forwardPass(vars input[5], vars latent[LATENT_DIM], vars output[5]) {
    for (int j = 0; j < LATENT_DIM; j++) {
        latent[j] = 0;
        for (int i = 0; i < 5; i++) {
            latent[j] += input[i] * encoderWeights[i][j];
        }
    }
    for (int i = 0; i < 5; i++) {
        output[i] = 0;
        for (int j = 0; j < LATENT_DIM; j++) {
            output[i] += latent[j] * decoderWeights[j][i];
        }
    }
}

function backpropagate(vars input[5], vars output[5], vars latent[LATENT_DIM]) {
    for (int i = 0; i < 5; i++) {
        for (int j = 0; j < LATENT_DIM; j++) {
            double gradEncoder = (input[i] - output[i]) * decoderWeights[j][i];
            double gradDecoder = (input[i] - output[i]) * latent[j];
            encoderWeights[i][j] += learningRate * gradEncoder;
            decoderWeights[j][i] += learningRate * gradDecoder;
        }
    }
}

function trainAutoencoder(vars embeddings[PAIRS][5]) {
    for (int epoch = 0; epoch < 50; epoch++) {
        for (int i = 0; i < PAIRS; i++) {
            vars latent[LATENT_DIM];
            vars output[5];
            forwardPass(embeddings[i], latent, output);
            backpropagate(embeddings[i], output, latent);
        }
    }
}

// Step 6: Generate trading signals
function generateSignals() {
    for (int i = 0; i < PAIRS; i++) {
        double mean = 0, stddev = 0;
        for (int j = 0; j < 3; j++) {
            mean += reducedMatrix[i][j];
            stddev += pow(reducedMatrix[i][j] - mean, 2);
        }
        stddev = sqrt(stddev / 3);
        double threshold = mean + thresholdMultiplier * stddev;
        if (reducedMatrix[i][0] > threshold) signals[i] = 1;
        else if (reducedMatrix[i][0] < -threshold) signals[i] = -1;
        else signals[i] = 0;
    }
}

// Step 7: Execute trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0) enterLong(CurrencyPairs[i]);
        else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
    }
}

// Main function
function run() {
    set(PLOTNOW);
    calculateVolatilities();
    constructAdjacencyMatrix();
    propagateEmbeddings();
    updateIncrementalPCA(nodeEmbeddings);
    trainAutoencoder(nodeEmbeddings);
    generateSignals();
    executeTrades();
}

Last edited by TipmyPip; 01/07/25 11:18.
Volatility Graph Dynamics [Re: TipmyPip] #488526
01/07/25 12:10
01/07/25 12:10
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
You are tasked with designing an advanced algorithmic trading strategy that integrates Kernel PCA and Graph Neural Networks (GNNs) to uncover hidden trading opportunities in a highly interconnected financial system of 𝑁=28 currency pairs. The relationships between these pairs are nonlinear and dynamic, creating a computational challenge to extract actionable trading signals.

The Problem
1. Volatility Web Each currency pair 𝐶𝑖 has a volatility 𝑉𝑖(𝑡) at time 𝑡, evolving as:

Vᵢ(t) = αᵢ ⋅ sin((π / 2) ⋅ Vⱼ(t-1)) + βᵢ ⋅ cos((π / 3) ⋅ Vₖ(t-2)) + γᵢ

Where:

𝑗≠𝑘≠𝑖 and 𝑗,𝑘∈[1,28] j,k∈[1,28],𝛼𝑖,𝛽𝑖,𝛾𝑖 : Randomly initialized coefficients influenced by historical price movements,
𝑡: Discrete time steps.

2. Kernel Transformation
The relationships between currency pairs are represented using a Gaussian kernel matrix
𝐾(𝑡), defined as:

Kᵢⱼ(t) = exp(-((Vᵢ(t) - Vⱼ(t))²) / (2 ⋅ σ²))

Where:

𝐾𝑖𝑗(𝑡): Similarity between volatilities
𝑉𝑖 and 𝑉𝑗, 𝜎: Kernel bandwidth, dynamically adjusted based on volatility clustering:

σ(t) = σ₀ ⋅ (1 + κ ⋅ StdDev(V(t)))

3. Enhanced PCA Extract principal components from 𝐾(𝑡) using Kernel PCA:

Eigenvalue Decomposition:

K(t) = V(t) ⋅ Λ(t) ⋅ V(t)^T

Where:

Λ(𝑡): Diagonal matrix of eigenvalues
𝜆𝑘(𝑡),𝑉(𝑡): Matrix of eigenvectors 𝑣𝑘(𝑡).

Projection: Compute the PCA-reduced features 𝑍𝑖(𝑡) for each currency pair:

Zᵢ(t) = [⟨Kᵢ(t), v₁⟩, ⟨Kᵢ(t), v₂⟩, ⟨Kᵢ(t), v₃⟩]

Where
𝑍𝑖(𝑡)∈R3 are the top-3 principal components.

4. Graph Construction
Construct 28 graphs, one for each GNN, using PCA-reduced features
𝑍𝑖(𝑡) :

Adjacency Matrices:

Aᵢⱼⁿ(t) = exp(-||Zᵢ(t) - Zⱼ(t)||² / (2 ⋅ σ²))

Where
𝐴𝑖𝑗𝑛(𝑡) is the weight of the edge between
𝐶𝑖 and 𝐶𝑗 in the 𝑛𝑡ℎ graph.

Normalization: Normalize 𝐴𝑖𝑗𝑛(𝑡) row-wise:

Aᵢⱼⁿ(t) = Aᵢⱼⁿ(t) / ∑ⱼ Aᵢⱼⁿ(t)

5. GNN Refinement Refine
𝑍𝑖(𝑡) using a 2-layer Graph Neural Network:

Initialization:

Hᵢⁿ(0)(t) = Zᵢ(t)

Propagation: Update features at each layer 𝑙:

Hᵢⁿ(l+1)(t) = ReLU(∑ⱼ Aᵢⱼⁿ(t) ⋅ Hⱼⁿ(l)(t) ⋅ Wⁿ(l))

Where:

𝑊𝑛(𝑙): Trainable weight matrix for the 𝑛𝑡ℎ GNN.
Output: After 𝐿=2 layers, obtain the refined features:

Hᵢⁿ(L)(t)

6. Signal Generation

Generate trading signals using the first refined feature
𝐻 𝑖𝑛 (𝐿)(𝑡)[0]: Dynamic Threshold: Calculate a dynamic threshold Θ(𝑡):

Θ(t) = 𝔼[Hᵢⁿ(L)(t)[0]] + δ ⋅ StdDev(Hᵢⁿ(L)(t)[0])

Signals: Assign signals 𝑆𝑖𝑛(𝑡) for each GNN 𝑛:

Sᵢⁿ(t) ={ +1 if Hᵢⁿ(L)(t)[0] > Θ(t), -1 if Hᵢⁿ(L)(t)[0] < -Θ(t), 0 otherwise }

Final Signal Aggregation: Combine signals across all 28 GNNs:

Sᵢ(t) = Median(Sᵢⁿ(t) ∀ n ∈ [1,28])

Optimization Tasks
Parameter Optimization: Tune 𝜎0,𝜅,𝛿,𝑊𝑛(𝑙)σ 0​ ,κ,δ,W n (l) to maximize profitability.

Noise Robustness: Account for noise 𝜂𝑘(𝑡) in eigenvalues:

λₖ'(t) = λₖ(t) ⋅ (1 + ηₖ(t))

Where 𝜂𝑘(𝑡)∼𝒩(0,𝜆𝑘(𝑡)⋅𝜈)η k​ (t)∼N(0,λ k​ (t)⋅ν), and 𝜈 is a noise coefficient.

Sharpe Ratio: Maximize the Sharpe ratio:

Sharpe = Mean(Returns) / StdDev(Returns)

Puzzle Objective

Simulate 𝑉𝑖(𝑡) over 1000 ticks for all 28 currency pairs.
Construct 28 GNNs using PCA-reduced features and adjacency matrices.
Refine features through GNN propagation.
Generate trading signals based on dynamic thresholds.
Maximize cumulative returns with a Sharpe ratio above 2.0.


Code
#define PAIRS 28
#define COMPONENTS 3 // Number of principal components from PCA
#define GNN_LAYERS 2 // Number of GNN layers per GNN

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

// Variables
vars volatilities[PAIRS];             // Volatility for each pair
vars adjacencyMatrices[PAIRS][PAIRS][28];  // Adjacency matrices for 28 GNNs
vars pcaReducedFeatures[PAIRS][COMPONENTS]; // PCA-reduced features
vars gnnWeights[28][GNN_LAYERS][COMPONENTS][COMPONENTS]; // GNN weights for each GNN
vars gnnRefinedFeatures[PAIRS][COMPONENTS]; // Refined features from GNNs
vars kernelMatrix[PAIRS][PAIRS];      // Kernel matrix for PCA
vars eigenvalues[PAIRS];              // Eigenvalues from PCA
vars eigenvectors[PAIRS][PAIRS];      // Eigenvectors from PCA
vars reducedMatrix[PAIRS][COMPONENTS]; // Final reduced components
vars signals[PAIRS];                  // Final trading signals
int lookback = 50;
int propagationDepth = 3;             // GNN propagation depth

// Step 1: Calculate volatilities for all pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
}

// Step 2: Construct adjacency matrices for each GNN
function constructAdjacencyMatrices(vars features[PAIRS][COMPONENTS]) {
    for (int gnn = 0; gnn < 28; gnn++) { // Each GNN has its own adjacency matrix
        for (int i = 0; i < PAIRS; i++) {
            for (int j = 0; j < PAIRS; j++) {
                double distance = 0;
                for (int k = 0; k < COMPONENTS; k++) {
                    distance += pow(features[i][k] - features[j][k], 2);
                }
                adjacencyMatrices[i][j][gnn] = exp(-distance / (2 * pow(0.5, 2))); // Gaussian kernel
            }
        }
    }
}

// Step 3: Initialize GNN weights
function initializeGNNWeights() {
    for (int gnn = 0; gnn < 28; gnn++) {
        for (int l = 0; l < GNN_LAYERS; l++) {
            for (int i = 0; i < COMPONENTS; i++) {
                for (int j = 0; j < COMPONENTS; j++) {
                    gnnWeights[gnn][l][i][j] = random() * 0.1; // Small random initialization
                }
            }
        }
    }
}

// Step 4: Propagate features through each GNN
function propagateGNN(vars features[PAIRS][COMPONENTS]) {
    vars tempFeatures[PAIRS][COMPONENTS];
    for (int gnn = 0; gnn < 28; gnn++) { // Process each GNN
        for (int t = 0; t < propagationDepth; t++) { // Propagation steps
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < COMPONENTS; k++) {
                    tempFeatures[i][k] = 0;
                    for (int j = 0; j < PAIRS; j++) {
                        for (int m = 0; m < COMPONENTS; m++) {
                            tempFeatures[i][k] += adjacencyMatrices[i][j][gnn] * features[j][m] * gnnWeights[gnn][t][m][k];
                        }
                    }
                    tempFeatures[i][k] = max(0, tempFeatures[i][k]); // ReLU activation
                }
            }
            // Update features for the next layer
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < COMPONENTS; k++) {
                    features[i][k] = tempFeatures[i][k];
                }
            }
        }
    }
    // Copy the refined features
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < COMPONENTS; k++) {
            gnnRefinedFeatures[i][k] = features[i][k];
        }
    }
}

// Step 5: Perform Kernel PCA
function performKernelPCA() {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < COMPONENTS; j++) { // Use top COMPONENTS
            reducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 6: Generate trading signals
function generateSignals() {
    double mean = 0, stddev = 0;
    for (int i = 0; i < PAIRS; i++) {
        mean += reducedMatrix[i][0];
    }
    mean /= PAIRS;
    for (int i = 0; i < PAIRS; i++) {
        stddev += pow(reducedMatrix[i][0] - mean, 2);
    }
    stddev = sqrt(stddev / PAIRS);
    double threshold = mean + 1.0 * stddev;

    for (int i = 0; i < PAIRS; i++) {
        if (reducedMatrix[i][0] > threshold) signals[i] = 1; // Buy
        else if (reducedMatrix[i][0] < -threshold) signals[i] = -1; // Sell
        else signals[i] = 0; // Hold
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate volatilities
    calculateVolatilities();

    // Step 2: Perform Kernel PCA to reduce features
    performKernelPCA();

    // Step 3: Construct adjacency matrices for GNNs
    constructAdjacencyMatrices(reducedMatrix);

    // Step 4: Initialize GNN weights
    initializeGNNWeights();

    // Step 5: Apply GNN propagation
    propagateGNN(reducedMatrix);

    // Step 6: Generate trading signals
    generateSignals();

    // Step 7: Execute trades
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0) enterLong(CurrencyPairs[i]);
        else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
    }
}

Synergistic Graph-PCA Arbitrage (SGPA) [Re: TipmyPip] #488537
01/09/25 17:57
01/09/25 17:57
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
In the realm of market energies, 28 currency pairs, each represented as a celestial entity 𝐶1,𝐶2,…,𝐶28, dance to the rhythms of volatility and interconnectedness. These entities are bound by the threads of a Volatility Web, which symbolizes the fluctuating relationships between their inner energies (volatilities). The goal is to achieve a state of market equilibrium, a harmonious alignment where profitable opportunities can be uncovered while respecting the natural dynamics of the system. ( Attached problem description file.)


Code
#define PAIRS 28
#define COMPONENTS 3  // Number of PCA components
#define GNN_LAYERS 2  // Number of GNN layers
#define ACTIONS 3     // Buy, Sell, Hold

// Variables
string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

// Enhanced PCA, GNN, and Signal Variables
vars kernelMatrix[PAIRS][PAIRS];            // Kernel matrix for PCA
vars pcaReducedFeatures[PAIRS][COMPONENTS]; // PCA-reduced features for each pair
vars adjacencyMatrices[PAIRS][PAIRS];       // Adjacency matrices for GNNs
vars gnnWeights[GNN_LAYERS][COMPONENTS][COMPONENTS]; // GNN weights
vars gnnOutputs[PAIRS][ACTIONS];            // GNN probabilities for Buy/Sell/Hold
vars similarityMatrix[PAIRS][PAIRS];        // Cross-Entropy similarity matrix
vars refinedOutputs[PAIRS][ACTIONS];        // Refined GNN probabilities
vars signals[PAIRS];                        // Final trading signals

// Step 1: Perform Kernel PCA
function performKernelPCA() {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < COMPONENTS; j++) { // Use top COMPONENTS
            pcaReducedFeatures[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 2: Initialize GNN Weights
function initializeGNNWeights() {
    for (int l = 0; l < GNN_LAYERS; l++) {
        for (int i = 0; i < COMPONENTS; i++) {
            for (int j = 0; j < COMPONENTS; j++) {
                gnnWeights[l][i][j] = random() * 0.1; // Small random initialization
            }
        }
    }
}

// Step 3: GNN Propagation
function propagateGNN() {
    vars tempFeatures[PAIRS][COMPONENTS];
    for (int l = 0; l < GNN_LAYERS; l++) { // GNN propagation layers
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < COMPONENTS; k++) {
                tempFeatures[i][k] = 0;
                for (int j = 0; j < PAIRS; j++) {
                    for (int m = 0; m < COMPONENTS; m++) {
                        tempFeatures[i][k] += adjacencyMatrices[i][j] * pcaReducedFeatures[j][m] * gnnWeights[l][m][k];
                    }
                }
                tempFeatures[i][k] = max(0, tempFeatures[i][k]); // ReLU activation
            }
        }
        // Update PCA features for the next layer
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < COMPONENTS; k++) {
                pcaReducedFeatures[i][k] = tempFeatures[i][k];
            }
        }
    }
    // Generate probabilities (Buy/Sell/Hold) based on final GNN outputs
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < ACTIONS; k++) {
            gnnOutputs[i][k] = random() * 0.1; // Placeholder for GNN probability outputs
        }
    }
}

// Step 4: Compute Cross-Entropy Similarity
function computeCrossEntropySimilarity() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            similarityMatrix[i][j] = 0;
            for (int k = 0; k < ACTIONS; k++) {
                similarityMatrix[i][j] -= gnnOutputs[i][k] * log(gnnOutputs[j][k] + 1e-8);
            }
        }
    }
}

// Step 5: Refine GNN Outputs Using Similarity
function refineGNNOutputs() {
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < ACTIONS; k++) {
            refinedOutputs[i][k] = 0;
            double weightSum = 0;
            for (int j = 0; j < PAIRS; j++) {
                refinedOutputs[i][k] += similarityMatrix[i][j] * gnnOutputs[j][k];
                weightSum += similarityMatrix[i][j];
            }
            refinedOutputs[i][k] /= (weightSum + 1e-8); // Normalize
        }
    }
}

// Step 6: Generate Trading Signals
function generateSignals() {
    for (int i = 0; i < PAIRS; i++) {
        signals[i] = refinedOutputs[i][0] - refinedOutputs[i][1]; // Buy-Sell difference
    }
}

// Step 7: Execute Trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0) enterLong(CurrencyPairs[i]);
        else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
    }
}

// Main Function
function run() {
    set(PLOTNOW);

    // Step 1: Perform Kernel PCA
    performKernelPCA();

    // Step 2: Initialize GNN weights
    initializeGNNWeights();

    // Step 3: Propagate GNN
    propagateGNN();

    // Step 4: Compute Cross-Entropy Similarity
    computeCrossEntropySimilarity();

    // Step 5: Refine GNN outputs
    refineGNNOutputs();

    // Step 6: Generate trading signals
    generateSignals();

    // Step 7: Execute trades
    executeTrades();
}

Attached Files
Last edited by TipmyPip; 01/09/25 18:09.
Decoding the Dynamics of Volatility Interdependencies [Re: TipmyPip] #488538
01/09/25 18:20
01/09/25 18:20
Joined: Sep 2017
Posts: 164
TipmyPip Online OP
Member
TipmyPip  Online OP
Member

Joined: Sep 2017
Posts: 164
A Game-Theoretic and Abstract Perspective: The Dance of Volatility

In the ever-unfolding theater of financial markets, imagine a dynamic stage where 28 players—currency pairs—engage in an intricate and ceaseless dance. Each player moves to the rhythm of the global economy, its steps choreographed by the forces of supply, demand, sentiment, and speculation. Yet, the rules of this dance are not static; they shift in response to unseen pressures, from political tremors to macroeconomic tides.

The problem before us is akin to deciphering the secret language of this dance. It is not merely about observing the movements but about understanding the hidden relationships—the subtle cues and responses that bind the dancers together. Game theory offers a lens through which we might glimpse the rules of this game. It teaches us that no dancer moves in isolation; every step, every pause, every flourish is shaped by the anticipation of others' moves.

In this game, volatility becomes a signal, a whisper of intent, echoing through the financial theater. Each player’s volatility reflects its internal tensions and external interactions, and collectively, these signals form a web of interdependencies. The challenge lies in untangling this web, not to still the dance, but to predict its next evolution.

The problem is also an abstraction of mathematical elegance. Imagine the players as entities in a multidimensional space, their positions defined by intricate patterns of volatility. This space is not flat but warped by nonlinearities, where proximity signifies similarity, and distance hints at independence. Yet, even the closest dancers may diverge when the music shifts.

The task is to map this space, not merely by observing the surface but by delving into its deeper dimensions. Enhanced techniques like principal component analysis allow us to distill the essence of the dance, reducing its complexity while preserving its soul. Graph structures emerge to connect the players, each edge a reflection of shared rhythms and mutual influence. These connections are not static; they evolve, adapting as the dancers respond to new melodies.

But here lies the heart of the puzzle: how do we assign meaning to these connections? How do we ensure that what we perceive as a pattern is not an illusion conjured by noise? The game is adversarial in nature, with uncertainty itself playing the role of a cunning opponent. It introduces randomness to confound our predictions, demanding that we refine our understanding, filter the signals, and discard the noise.

To navigate this space, we employ strategies that echo the principles of cooperation and competition. Graph neural networks, as players in their own right, enter the stage, modeling relationships and predicting movements. Yet, they, too, are fallible, requiring constant refinement through feedback and comparison. Cross-entropy becomes the arbiter, a measure of alignment between their outputs, guiding the networks to harmonize with the dance.

At its core, this problem challenges us to think deeply about strategy and foresight. It is not merely about predicting individual moves but about understanding the grand choreography. What happens when the music changes? When the connections between players weaken or intensify? How do we balance our desire for precision with the inevitability of uncertainty?

The solution lies not in imposing control but in embracing the fluidity of the game. It requires humility to recognize the limits of our understanding and the creativity to imagine new ways to learn. It demands an appreciation for the interplay of chaos and order, a respect for the dancers' autonomy, and the wisdom to act when the signals align, and the next move becomes clear. In this, the problem transcends finance, touching upon the universal dance of interconnection and adaptation.


Code
#define PAIRS 28
#define COMPONENTS 3  // Number of PCA components
#define GNN_LAYERS 2  // Number of GNN layers
#define ACTIONS 3     // Buy, Sell, Hold

// Variables
string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

// Kernel PCA, GNN, and Signal Variables
vars kernelMatrix[PAIRS][PAIRS];            // Kernel matrix for PCA
vars pcaReducedFeatures[PAIRS][COMPONENTS]; // PCA-reduced features for each pair
vars adjacencyMatrices[PAIRS][PAIRS];       // Adjacency matrices for GNNs
vars gnnWeights[GNN_LAYERS][COMPONENTS][COMPONENTS]; // GNN weights
vars gnnOutputs[PAIRS][ACTIONS];            // GNN probabilities for Buy/Sell/Hold
vars similarityMatrix[PAIRS][PAIRS];        // Cross-Entropy similarity matrix
vars refinedOutputs[PAIRS][ACTIONS];        // Refined GNN probabilities
vars signals[PAIRS];                        // Final trading signals

// Step 1: Perform Kernel PCA
function performKernelPCA() {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < COMPONENTS; j++) { // Use top COMPONENTS
            pcaReducedFeatures[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 2: Initialize GNN Weights
function initializeGNNWeights() {
    for (int l = 0; l < GNN_LAYERS; l++) {
        for (int i = 0; i < COMPONENTS; i++) {
            for (int j = 0; j < COMPONENTS; j++) {
                gnnWeights[l][i][j] = random() * 0.1; // Small random initialization
            }
        }
    }
}

// Step 3: GNN Propagation
function propagateGNN() {
    vars tempFeatures[PAIRS][COMPONENTS];
    for (int l = 0; l < GNN_LAYERS; l++) { // GNN propagation layers
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < COMPONENTS; k++) {
                tempFeatures[i][k] = 0;
                for (int j = 0; j < PAIRS; j++) {
                    for (int m = 0; m < COMPONENTS; m++) {
                        tempFeatures[i][k] += adjacencyMatrices[i][j] * pcaReducedFeatures[j][m] * gnnWeights[l][m][k];
                    }
                }
                tempFeatures[i][k] = max(0, tempFeatures[i][k]); // ReLU activation
            }
        }
        // Update PCA features for the next layer
        for (int i = 0; i < PAIRS; i++) {
            for (int k = 0; k < COMPONENTS; k++) {
                pcaReducedFeatures[i][k] = tempFeatures[i][k];
            }
        }
    }
    // Generate probabilities (Buy/Sell/Hold) based on final GNN outputs
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < ACTIONS; k++) {
            gnnOutputs[i][k] = random() * 0.1; // Placeholder for GNN probability outputs
        }
    }
}

// Step 4: Compute Cross-Entropy Similarity
function computeCrossEntropySimilarity() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            similarityMatrix[i][j] = 0;
            for (int k = 0; k < ACTIONS; k++) {
                similarityMatrix[i][j] -= gnnOutputs[i][k] * log(gnnOutputs[j][k] + 1e-8);
            }
        }
    }
}

// Step 5: Refine GNN Outputs Using Similarity
function refineGNNOutputs() {
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < ACTIONS; k++) {
            refinedOutputs[i][k] = 0;
            double weightSum = 0;
            for (int j = 0; j < PAIRS; j++) {
                refinedOutputs[i][k] += similarityMatrix[i][j] * gnnOutputs[j][k];
                weightSum += similarityMatrix[i][j];
            }
            refinedOutputs[i][k] /= (weightSum + 1e-8); // Normalize
        }
    }
}

// Step 6: Generate Trading Signals
function generateSignals() {
    for (int i = 0; i < PAIRS; i++) {
        signals[i] = refinedOutputs[i][0] - refinedOutputs[i][1]; // Buy-Sell difference
    }
}

// Step 7: Execute Trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0) enterLong(CurrencyPairs[i]);
        else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
    }
}

// Main Function
function run() {
    set(PLOTNOW);

    // Step 1: Perform Kernel PCA
    performKernelPCA();

    // Step 2: Initialize GNN weights
    initializeGNNWeights();

    // Step 3: Propagate GNN
    propagateGNN();

    // Step 4: Compute Cross-Entropy Similarity
    computeCrossEntropySimilarity();

    // Step 5: Refine GNN outputs
    refineGNNOutputs();

    // Step 6: Generate trading signals
    generateSignals();

    // Step 7: Execute trades
    executeTrades();
}

Attached Files
Page 6 of 11 1 2 4 5 6 7 8 10 11

Moderated by  Petra 

Powered by UBB.threads™ PHP Forum Software 7.7.1