You are tasked with solving a nonlinear, multi-dimensional volatility arbitrage problem. Your goal is to design a strategy that detects complex relationships between currency pair volatilities using Kernel PCA and neural networks. The relationships between volatilities are highly entangled and nonlinear, requiring advanced mathematical techniques.
The Problem
Volatility Evolution: Each currency pair ð¶ð‘– has a volatility ð‘‰ð‘–(ð‘¡), defined as:
V_i(t) = alpha_i * sin((pi / 2) * V_j(t-1)) + beta_i * cos((pi / 3) * V_k(t-2)) + gamma_i + epsilon_i(t)
Where:
ð‘—!=ð‘˜!=ð‘–, and ð‘—,ð‘˜âˆˆ[1,ð‘], with ð‘=28 currency pairs.
ð›¼ð‘–,ð›½ð‘–,ð›¾ð‘– are coefficients based on historical data.
ðœ–ð‘–(ð‘¡)∼ð‘(0,ðœŽ2)ϵ i
​ (t)∼N(0,σ2) is Gaussian noise.
Kernel Transformation: The volatility spreads are mapped into a high-dimensional kernel space:
K_ij(t) = exp(-((V_i(t) - V_j(t))^2) / (2 * sigma^2))
Where:
ð¾ð‘–ð‘—(ð‘¡) is the similarity measure between volatilities ð‘‰ð‘– and ð‘‰ð‘—.
𜎠is the kernel width.
Principal Component Analysis (PCA): Decompose the kernel matrix
ð¾(ð‘¡) into eigenvalues and eigenvectors:
K(t) = sum_{k=1}^N (lambda_k * (v_k @ v_k'))
Extract the top ð‘š-principal components that explain at least
90% of the variance.
Noise-Induced Drift: Eigenvalues experience stochastic drift:
lambda_k'(t) = lambda_k(t) * (1 + eta_k(t))
Where:
ðœ‚ð‘˜(ð‘¡)∼ð‘(0,ð‘™ð‘Žð‘šð‘ð‘‘𑎠ð‘˜(ð‘¡)∗ð‘›ð‘¢)​
(t)∼N(0,lambda k(t)∗nu).
ð‘›ð‘¢ is the noise scaling factor.
Reduced Data: Project the kernel matrix onto the top
𑚠principal components:
R_i(t) = sum_{k=1}^m (dot(K_i(t), v_k) * v_k)
Dynamic Threshold: Neural networks predict thresholds for trade execution:
Theta_i(t) = NeuralNet(K_i(t), R_i(t))
Trade Signal: Normalize the reduced data and execute trades based on the signal:
Signal(C_i) = R_i(t) / sqrt(sum_{j=1}^N R_j(t)^2)
Trades are executed when:
abs(Signal(C_i)) > Theta_i(t)
Additional Complexity Dynamic Kernel Width:
Allow 𜎠to adapt dynamically based on volatility clustering:
sigma(t) = sigma_0 * (1 + kappa * StdDev(V(t)))
Component Selection: Use a second neural network to optimize the number of components ð‘š:
m_opt = NeuralNet_Components(K(t), lambda(t), eigenvectors)
Cross-Asset Correlations: Introduce equities, bonds, or commodities to influence ð‘‰ð‘–(ð‘¡).
Mathematical Summary
Volatility Dynamics:
V_i(t) = alpha_i * sin((pi / 2) * V_j(t-1)) + beta_i * cos((pi / 3) * V_k(t-2)) + gamma_i + epsilon_i(t)
Kernel Matrix:
K_ij(t) = exp(-((V_i(t) - V_j(t))^2) / (2 * sigma^2))
Kernel PCA Decomposition:
K(t) = sum_{k=1}^N (lambda_k * (v_k @ v_k'))
Projected Data:
R_i(t) = sum_{k=1}^m (dot(K_i(t), v_k) * v_k)
Dynamic Threshold:
Theta_i(t) = NeuralNet(K_i(t), R_i(t))
Trade Signal:
Signal(C_i) = R_i(t) / sqrt(sum_{j=1}^N R_j(t)^2)
Objective
Simulate the market with ð‘=28 currency pairs and 1000 ticks.
Train neural networks to predict thresholds (ð‘‡â„Žð‘’ð‘¡ð‘Ž(ð‘¡)) and optimize components (ð‘š).
Execute the strategy and maximize the Sharpe ratio while maintaining a maximum drawdown below 5%.
#define PAIRS 28 // Number of currency pairs
string CurrencyPairs[PAIRS] = {
"EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
"AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
"EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
"USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};
vars kernelMatrix[PAIRS][PAIRS]; // Kernel matrix for Kernel PCA
vars ReducedMatrix[PAIRS][PAIRS]; // Reduced matrix for principal components
vars Thresholds[PAIRS]; // Neural network predicted thresholds
vars smoothedSignals[PAIRS]; // Smoothed signals for risk control
vars Predictions[PAIRS]; // Neural network predictions
vars volatilities[PAIRS]; // Volatility for each pair
vars eigenvalues[PAIRS]; // Eigenvalues from PCA
vars eigenvectors[PAIRS][PAIRS]; // Eigenvectors from PCA
int lookback = 50; // Lookback period for volatility calculation
int NeuralModelThreshold; // Handle for neural network predicting thresholds
int NeuralModelSigma; // Handle for neural network predicting kernel width
var sigma = 0.5; // Default kernel width parameter
var dynamicThreshold; // Dynamic trading threshold
// Function to calculate volatilities for all pairs
function calculateVolatilities() {
for (int i = 0; i < PAIRS; i++) {
volatilities[i] = StdDev(series(price(CurrencyPairs[i]), lookback));
}
}
// Function to calculate the kernel matrix using a Gaussian kernel
function calculateKernelMatrix(vars volatilities[PAIRS], vars kernelMatrix[PAIRS][PAIRS], var sigma) {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
kernelMatrix[i][j] = exp(-pow(volatilities[i] - volatilities[j], 2) / (2 * pow(sigma, 2))); // Gaussian kernel
}
}
}
// Perform Kernel PCA: Decompose the kernel matrix into eigenvalues and eigenvectors
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars eigenvalues, vars eigenvectors) {
eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors); // Decompose the kernel matrix
}
// Reduce data using the top principal components
function reduceKernelData(vars kernelMatrix[PAIRS][PAIRS], vars eigenvectors[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS], int numComponents) {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < numComponents; j++) {
ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
}
}
}
// Neural network training function for dynamic threshold prediction
function trainNeuralNetworks() {
// Train for thresholds
LayerPerceptron(10); // 10 nodes in hidden layer
LayerNormalize();
LayerPerceptron(1); // Output layer for threshold prediction
NeuralModelThreshold = Train(
"threshold_model", // Model name
Features, // Input features (kernel matrix and volatilities)
Targets, // Target outputs (thresholds from historical data)
NumSamples // Number of samples
);
// Train for sigma adjustment
LayerPerceptron(10); // 10 nodes in hidden layer
LayerNormalize();
LayerPerceptron(1); // Output layer for kernel width (sigma) prediction
NeuralModelSigma = Train(
"sigma_model", // Model name
Features, // Input features (historical volatilities and returns)
Targets, // Target outputs (optimal sigma values)
NumSamples // Number of samples
);
}
// Predict dynamic thresholds using the neural network
function predictThresholds(vars kernelMatrix[PAIRS][PAIRS], vars Thresholds[PAIRS]) {
for (int i = 0; i < PAIRS; i++) {
Thresholds[i] = Predict(NeuralModelThreshold, kernelMatrix[i]); // Predict for each row in kernel matrix
}
}
// Predict dynamic sigma using the neural network
function predictSigma(vars volatilities[PAIRS]) {
return Predict(NeuralModelSigma, volatilities); // Predict sigma dynamically
}
// Calculate a dynamic threshold based on reduced signals
function calculateDynamicThreshold(int topComponents) {
var sumSquares = 0;
int count = 0;
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < topComponents; j++) {
sumSquares += ReducedMatrix[i][j] * ReducedMatrix[i][j];
count++;
}
}
return sqrt(sumSquares / count); // Standard deviation as threshold
}
// Smooth signals to reduce noise
function smoothSignals(vars Predictions[PAIRS], vars smoothedSignals[PAIRS]) {
for (int i = 0; i < PAIRS; i++) {
smoothedSignals[i] = SMA(series(Predictions[i]), lookback);
}
}
// Trade logic with neural network-predicted thresholds
function tradeWithNeuralNetwork(vars smoothedSignals[PAIRS], vars Thresholds[PAIRS]) {
for (int i = 0; i < PAIRS; i++) {
if (smoothedSignals[i] > Thresholds[i]) {
enterLong(CurrencyPairs[i]);
} else if (smoothedSignals[i] < -Thresholds[i]) {
enterShort(CurrencyPairs[i]);
}
}
}
// Main trading function
function run() {
set(PLOTNOW);
// Step 1: Calculate volatilities
calculateVolatilities();
// Step 2: Predict sigma using the neural network
sigma = predictSigma(volatilities);
// Step 3: Compute kernel matrix
calculateKernelMatrix(volatilities, kernelMatrix, sigma);
// Step 4: Perform Kernel PCA
performKernelPCA(kernelMatrix, eigenvalues, eigenvectors);
// Step 5: Optimize the number of components based on variance explained
int optimalComponents = optimizeComponents(eigenvalues, PAIRS, 0.90);
// Step 6: Reduce data using the top principal components
reduceKernelData(kernelMatrix, eigenvectors, ReducedMatrix, optimalComponents);
// Step 7: Predict thresholds using the neural network
predictThresholds(kernelMatrix, Thresholds);
// Step 8: Generate predictions (e.g., signal strength)
for (int i = 0; i < PAIRS; i++) {
Predictions[i] = dotProduct(kernelMatrix[i], Thresholds);
}
// Step 9: Smooth predictions for stable signals
smoothSignals(Predictions, smoothedSignals);
// Step 10: Execute trades based on predictions and thresholds
tradeWithNeuralNetwork(smoothedSignals, Thresholds);
}