Problem Context You are managing a portfolio of 𝑁=28 currency pairs, denoted as 𝐶1,𝐶2,…,𝐶𝑁. Your goal is to identify volatility arbitrage opportunities by analyzing volatility spreads and return correlations, projecting them into a nonlinear feature space, and recursively refining the results to adapt to market dynamics.

Market Dynamics
1. Volatility Spread Calculation The volatility spread between any two currency pairs 𝐶𝑖 and 𝐶𝑗 is given by:

V_ij(t) = sigma_i(t) - sigma_j(t),

where:

𝑠𝑖𝑔𝑚𝑎𝑖(𝑡): Rolling standard deviation of currency pair 𝐶𝑖 over the past 𝐿 time steps.
𝑉𝑖𝑗(𝑡): The relative volatility between 𝐶𝑖 and 𝐶𝑗.
2. Return Correlation The return correlation between 𝐶𝑖 and 𝐶𝑗 evolves according to:

rho_ij(t+1) = rho_ij(t) + eta_ij(t),

where:

𝑟ℎ𝑜𝑖𝑗(𝑡): Pearson correlation coefficient between the returns of 𝐶𝑖 and 𝐶𝑗.
𝑒𝑡𝑎𝑖𝑗(𝑡)∼𝑁(0,𝑛𝑢2): Gaussian noise representing market shocks.

Kernel Transformation
To capture nonlinear relationships, both the volatility spread matrix (𝑉) and the correlation matrix (𝑟ℎ𝑜) are projected into a high-dimensional feature space using Gaussian kernels.

Volatility Kernel:

K^(V)_ij = exp(-((V_ij - V_kl)^2) / (2 * sigma_V^2)),

where 𝑠𝑖𝑔𝑚𝑎𝑉 is the kernel width for volatility features.

Correlation Kernel:

K^(rho)_ij = exp(-((rho_ij - rho_kl)^2) / (2 * sigma_rho^2)),

where 𝑠𝑖𝑔𝑚𝑎𝑟ℎ𝑜 is the kernel width for correlation features.

Recursive Feedback Mechanism
The reduced features from each kernel matrix influence the other in a feedback loop:

Feedback for Volatility Kernel:

K^(V)_ij <- K^(V)_ij + lambda * R^(rho)_ij,

where:

𝑅(𝑟ℎ𝑜)𝑖𝑗: Reduced features from the correlation kernel matrix
𝐾(𝑟ℎ𝑜).

Feedback for Correlation Kernel:
K^(rho)_ij <- K^(rho)_ij + lambda * R^(V)_ij,

where:

𝑅(𝑉)𝑖𝑗​: Reduced features from the volatility kernel matrix 𝐾(𝑉).

Kernel PCA
Each kernel matrix (𝐾(𝑉), 𝐾(𝑟ℎ𝑜) is decomposed using Kernel PCA:

K(t) = sum_{k=1}^m lambda_k * (v_k @ v_k'),

where:

𝑙𝑎𝑚𝑏𝑑𝑎𝑘 : Eigenvalues of the kernel matrix.
𝑣𝑘 : Eigenvectors of the kernel matrix.
𝑚: Number of principal components that explain >=90 of the variance.
The reduced feature matrices are:

R^(V) = sum_{k=1}^m (lambda_k * v_k),
R^(rho) = sum_{k=1}^m (lambda_k * v_k).

Neural Network Predictions
Dynamic Thresholds: Two neural networks predict dynamic thresholds for volatility (𝑇ℎ𝑒𝑡𝑎(𝑉)) and correlation (𝑇ℎ𝑒𝑡𝑎(𝑟ℎ𝑜)):

Theta^(V)_ij = NN_1(R^(V)_ij, context),
Theta^(rho)_ij = NN_2(R^(rho)_ij, context).

Meta-Neural Network: A third neural network combines these predictions to generate final trade signals:

S_ij = MetaNN(Theta^(V)_ij, Theta^(rho)_ij, R^(V)_ij, R^(rho)_ij).

Trade Execution

Signal Normalization: Normalize the signals:

S^_ij = S_ij / sqrt(sum_{k,l} S_kl^2),

ensuring that trade magnitudes are proportional to signal strength.

Trade Conditions: Execute a trade when:

abs(S^_ij) > Theta, where 𝑇ℎ𝑒𝑡𝑎 is a global threshold, dynamically adjusted based on portfolio volatility.

Optimization Goals

Your task is to design a strategy that:

Maximizes the Sharpe Ratio:

Sharpe Ratio = (Mean(Returns) - Risk-Free Rate) / StdDev(Returns).

Minimizes Maximum Drawdown:

Max Drawdown = max(Peak - Trough),

ensuring drawdown stays below 5
Explains Variance in PCA: Ensure 𝑚 components explain at least 90 of the variance:

sum_{k=1}^m lambda_k / sum_{k=1}^N lambda_k >= 0.9.

Complete Problem Workflow

Step 1: Calculate Volatility Spread:

V_ij(t) = sigma_i(t) - sigma_j(t)

Step 2: Update Correlations:

rho_ij(t+1) = rho_ij(t) + eta_ij(t)

Step 3: Compute Kernel Matrices:

Volatility Kernel:

K^(V)_ij = exp(-((V_ij - V_kl)^2) / (2 * sigma_V^2))

Correlation Kernel:

K^(rho)_ij = exp(-((rho_ij - rho_kl)^2) / (2 * sigma_rho^2))

Step 4: Perform Feedback Updates:

Volatility Feedback:

K^(V)_ij <- K^(V)_ij + lambda * R^(rho)_ij

Correlation Feedback:

K^(rho)_ij <- K^(rho)_ij + lambda * R^(V)_ij

Step 5: Decompose Using Kernel PCA:

K = sum_{k=1}^m lambda_k * (v_k @ v_k')

Step 6: Predict Thresholds and Signals:

Dynamic Thresholds:

Theta^(V)_ij = NN_1(R^(V)_ij, context)
Theta^(rho)_ij = NN_2(R^(rho)_ij, context)

Meta-Signal:

S_ij = MetaNN(Theta^(V)_ij, Theta^(rho)_ij, R^(V)_ij, R^(rho)_ij)

Step 7: Execute Trades:

Normalize Signals:

S^_ij = S_ij / sqrt(sum_{k,l} S_kl^2)

Trade Decision:

if abs(S^_ij) > Theta: Execute Trade



Code
#define PAIRS 28 // Number of currency pairs

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

vars volatilities[PAIRS];             // Volatility for each pair
vars correlations[PAIRS];             // Correlations for each pair
vars kernelMatrix1[PAIRS][PAIRS];     // Kernel matrix for PCA-1
vars kernelMatrix2[PAIRS][PAIRS];     // Kernel matrix for PCA-2
vars ReducedMatrix1[PAIRS][PAIRS];    // Reduced matrix for PCA-1
vars ReducedMatrix2[PAIRS][PAIRS];    // Reduced matrix for PCA-2
vars FeedbackMatrix1[PAIRS];          // Feedback-influenced matrix for PCA-1
vars FeedbackMatrix2[PAIRS];          // Feedback-influenced matrix for PCA-2
vars Threshold1[PAIRS];               // Thresholds from NN-1
vars Threshold2[PAIRS];               // Thresholds from NN-2
vars MetaFeatures[PAIRS];             // Meta-features for the meta neural network
vars FinalSignals[PAIRS];             // Final signals from the meta neural network
int lookback = 50;                    // Lookback period
int NN1, NN2, MetaNN;                 // Neural network handles
var lambda = 0.5;                     // Cross-influence weight
var sigma1 = 0.5;                     // Initial kernel width for PCA-1
var sigma2 = 0.5;                     // Initial kernel width for PCA-2

// Step 1: Calculate volatilities and correlations
function calculateFeatures() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
        correlations[i] = priceClose(CurrencyPairs[i]) - priceOpen(CurrencyPairs[i]); // Correlation proxy
    }
}

// Step 2: Calculate kernel matrices with initial parameters
function calculateKernelMatrices() {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < PAIRS; j++) {
            kernelMatrix1[i][j] = exp(-(pow(volatilities[i] - volatilities[j], 2)) / (2 * pow(sigma1, 2)));
            kernelMatrix2[i][j] = exp(-(pow(correlations[i] - correlations[j], 2)) / (2 * pow(sigma2, 2)));
        }
    }
}

// Step 3: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars eigenvalues, vars eigenvectors) {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
}

// Step 4: Reduce kernel data
function reduceKernelData(vars kernelMatrix[PAIRS][PAIRS], vars eigenvectors[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS], int components) {
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < components; j++) {
            ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 5: Apply feedback adjustments
function applyFeedbackAdjustments() {
    for (int i = 0; i < PAIRS; i++) {
        FeedbackMatrix1[i] = dotProduct(ReducedMatrix2[i], ReducedMatrix1[i]); // PCA-1 influenced by PCA-2
        FeedbackMatrix2[i] = dotProduct(ReducedMatrix1[i], ReducedMatrix2[i]); // PCA-2 influenced by PCA-1
    }
}

// Step 6: Train and predict neural networks
function trainNeuralNetworks() {
    // Train NN-1
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN1 = Train("NN1", ReducedMatrix1, Threshold1, PAIRS);

    // Train NN-2
    LayerPerceptron(10);
    LayerNormalize();
    LayerPerceptron(1);
    NN2 = Train("NN2", ReducedMatrix2, Threshold2, PAIRS);

    // Train Meta Neural Network
    LayerPerceptron(5);
    LayerNormalize();
    LayerPerceptron(1);
    MetaNN = Train("MetaNN", [Threshold1, Threshold2, FeedbackMatrix1, FeedbackMatrix2], FinalSignals, PAIRS);
}

function predictSignalsAndThresholds() {
    for (int i = 0; i < PAIRS; i++) {
        Threshold1[i] = Predict(NN1, FeedbackMatrix1[i]);
        Threshold2[i] = Predict(NN2, FeedbackMatrix2[i]);

        // Meta Neural Network combines predictions
        MetaFeatures[i] = [Threshold1[i], Threshold2[i], FeedbackMatrix1[i], FeedbackMatrix2[i]];
        FinalSignals[i] = Predict(MetaNN, MetaFeatures[i]);
    }
}

// Step 7: Execute trades
function executeTrades() {
    for (int i = 0; i < PAIRS; i++) {
        if (FinalSignals[i] > 0.5) {
            enterLong(CurrencyPairs[i]);
        } else if (FinalSignals[i] < -0.5) {
            enterShort(CurrencyPairs[i]);
        }
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate features
    calculateFeatures();

    // Step 2: Compute initial kernel matrices
    calculateKernelMatrices();

    // Step 3: Perform Kernel PCA
    vars eigenvalues1, eigenvectors1;
    vars eigenvalues2, eigenvectors2;
    performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
    performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);

    // Step 4: Reduce data
    reduceKernelData(kernelMatrix1, eigenvectors1, ReducedMatrix1, 3); // Top 3 components
    reduceKernelData(kernelMatrix2, eigenvectors2, ReducedMatrix2, 3);

    for (int iter = 0; iter < 5; iter++) { // Recursive iterations
        // Step 5: Apply feedback adjustments
        applyFeedbackAdjustments();

        // Step 6: Recompute kernel matrices with feedback
        calculateKernelMatrices();

        // Step 7: Perform Kernel PCA again
        performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
        performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);

        // Step 8: Predict thresholds and signals
        predictSignalsAndThresholds();

        // Step 9: Execute trades
        executeTrades();
    }
}