Overview
You are tasked with designing a multi-layer volatility arbitrage strategy for a portfolio of 28 currency pairs. The strategy leverages Kernel PCA to extract latent structures in pairwise volatility relationships and their interplay with profitability signals. The challenge is to optimize the combination of kernel components to maximize risk-adjusted profitability while managing noise and feedback loops between dependent volatility and profitability spaces.
Problem Statement
Volatility Pair Dynamics: Each pair ð¶ð‘–,ð¶ð‘— exhibits a volatility relationship:
V_{i,j}(t) = |σ_i(t) - σ_j(t)|,
where ðœŽð‘–(ð‘¡) (t) is the volatility of currency pair ð¶ð‘–, computed as:
σ_i(t) = StdDev(P_i(t), \text{lookback}), and ð‘ƒð‘–(ð‘¡) is the price series of ð¶ð‘–.
Profitability Metric: For each pair combination
(ð‘–,ð‘—), define a profitability measure Î ð‘–,ð‘—(ð‘¡):
Î _{i,j}(t) = |R_i(t) - R_j(t)|, where ð‘…ð‘–(ð‘¡) is the return:
R_i(t) = P_i(t) / P_i(t-1) - 1.
Kernel Transformation: Use a Gaussian kernel to map volatility and profitability measures into high-dimensional spaces:
K_{V,ij}(t) = exp(- (V_{i,j}(t) - V_{k,l}(t))^2 / (2 * σ_V^2)),
K_{Π,ij}(t) = exp(- (Π_{i,j}(t) - Π_{k,l}(t))^2 / (2 * σ_Π^2)).
Principal Component Extraction: Decompose the kernel matrices
ð¾ð‘‰ and ð¾Î into their eigenvalues ðœ†ð‘˜â€‹ and eigenvectors ð‘£ð‘˜â€‹ using:
K = Σ_{k=1}^N λ_k * (v_k ⊗ v_k), where ð‘=378 is the number of pair combinations.
Feedback Loop: The reduced components ð‘…𑉠and ð‘…Π​ are recursively coupled:
R_{V,i}(t) = Σ_{k=1}^m (dot(K_{V,i}, v_k) * R_{Π,k}(t)),
R_{Π,i}(t) = Σ_{k=1}^m (dot(K_{Π,i}, v_k) * R_{V,k}(t)).
Neural Network Predictions: Train two neural networks to predict dynamic thresholds for trade signals:
Θð‘‰(ð‘¡) based on ð‘…𑉠(volatility components).
ΘΠ(ð‘¡) based on ð‘…Î (profitability components).
Use a meta neural network to combine these predictions:
Θ_{final}(t) = MetaNN(Θ_V(t), Θ_Π(t)).
Trade Execution: Trades are executed based on normalized signals:
S_{i,j}(t) = R_{V,i}(t) / sqrt(Σ_{k=1}^N R_{V,k}(t)^2), with the condition:
|S_{i,j}(t)| > Θ_{final}(t).
Puzzle Constraints
Variance Explained: Select ð‘š, the number of top components, such that:
Σ_{k=1}^m λ_k / Σ_{k=1}^N λ_k ≥ 0.90.
Dynamic Kernel Widths: Adapt kernel widths ðœŽð‘‰ and ðœŽÎ dynamically:
σ_V(t) = σ_V(0) * (1 + κ * StdDev(V(t))),
σ_Π(t) = σ_Π(0) * (1 + κ * StdDev(Π(t))).
Risk-Adjusted Profitability: Optimize the Sharpe ratio:
Sharpe = E[Î _{i,j}(t)] / StdDev(Î _{i,j}(t)).
Feedback Convergence: Ensure that feedback loops between ð‘…𑉠and ð‘…Î converge within 10 iterations:
max(|R_V^{(n)} - R_V^{(n-1)}|, |R_Π^{(n)} - R_Π^{(n-1)}|) < ε.
Your Tasks Kernel PCA and Neural Networks:
Implement the kernel matrices ð¾ð‘‰ and ð¾Î . Extract ð‘š-principal components for both matrices.
Train neural networks ð‘ð‘1, ð‘ð‘2, and MetaNN.
Recursive Feedback: Establish recursive coupling between ð‘…𑉠V and ð‘…Î .
Ensure convergence within the specified tolerance.
Profitability Optimization:
Optimize the selection of pair combinations to maximize the cumulative profitability.
Backtesting:
Simulate the strategy over 10,000 ticks and report: Sharpe ratio. Maximum drawdown. Trade frequency.
#define PAIRS 28 // Number of currency pairs
#define COMBINATIONS 378 // Total number of unique pair combinations
string CurrencyPairs[PAIRS] = {
"EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
"AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
"EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
"USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};
vars volatilities[PAIRS]; // Volatility for each pair
vars volatilityRatios[COMBINATIONS]; // Volatility ratios for pair combinations
vars kernelMatrix1[COMBINATIONS][COMBINATIONS]; // Kernel matrix for PCA-1
vars kernelMatrix2[COMBINATIONS][COMBINATIONS]; // Kernel matrix for PCA-2
vars ReducedMatrix1[COMBINATIONS][COMBINATIONS]; // Reduced matrix for PCA-1
vars ReducedMatrix2[COMBINATIONS][COMBINATIONS]; // Reduced matrix for PCA-2
vars profitabilityMatrix[COMBINATIONS]; // Profitability matrix for pair combinations
vars Threshold1[COMBINATIONS]; // Thresholds from NN-1
vars Threshold2[COMBINATIONS]; // Thresholds from NN-2
vars MetaFeatures[COMBINATIONS]; // Meta-features for MetaNN
vars FinalSignals[COMBINATIONS]; // Final trade signals
int combinationIndex[COMBINATIONS][2]; // Index mapping for combinations
int NN1, NN2, MetaNN; // Neural network handles
int lookback = 50; // Lookback period
// Step 1: Calculate volatilities for all currency pairs
function calculateVolatilities() {
for (int i = 0; i < PAIRS; i++) {
volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
}
}
// Step 2: Generate all pair combinations
function generateCombinations() {
int index = 0;
for (int i = 0; i < PAIRS - 1; i++) {
for (int j = i + 1; j < PAIRS; j++) {
combinationIndex[index][0] = i; // First pair in the combination
combinationIndex[index][1] = j; // Second pair in the combination
index++;
}
}
}
// Step 3: Calculate volatility ratios for all combinations
function calculateVolatilityRatios() {
for (int k = 0; k < COMBINATIONS; k++) {
int i = combinationIndex[k][0];
int j = combinationIndex[k][1];
volatilityRatios[k] = abs(volatilities[i] - volatilities[j]); // Volatility difference
}
}
// Step 4: Compute kernel matrices
function calculateKernelMatrices(var sigma1, var sigma2) {
for (int i = 0; i < COMBINATIONS; i++) {
for (int j = 0; j < COMBINATIONS; j++) {
kernelMatrix1[i][j] = exp(-pow(volatilityRatios[i] - volatilityRatios[j], 2) / (2 * pow(sigma1, 2)));
kernelMatrix2[i][j] = exp(-pow(profitabilityMatrix[i] - profitabilityMatrix[j], 2) / (2 * pow(sigma2, 2)));
}
}
}
// Step 5: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[COMBINATIONS][COMBINATIONS], vars eigenvalues, vars eigenvectors) {
eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
}
// Step 6: Reduce kernel data
function reduceKernelData(vars kernelMatrix[COMBINATIONS][COMBINATIONS], vars eigenvectors[COMBINATIONS][COMBINATIONS], vars ReducedMatrix[COMBINATIONS][COMBINATIONS], int components) {
for (int i = 0; i < COMBINATIONS; i++) {
for (int j = 0; j < components; j++) {
ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
}
}
}
// Step 7: Train neural networks
function trainNeuralNetworks() {
// Train NN-1
LayerPerceptron(10);
LayerNormalize();
LayerPerceptron(1);
NN1 = Train("NN1", ReducedMatrix1, Threshold1, COMBINATIONS);
// Train NN-2
LayerPerceptron(10);
LayerNormalize();
LayerPerceptron(1);
NN2 = Train("NN2", ReducedMatrix2, Threshold2, COMBINATIONS);
// Train Meta Neural Network
LayerPerceptron(5);
LayerNormalize();
LayerPerceptron(1);
MetaNN = Train("MetaNN", [Threshold1, Threshold2], FinalSignals, COMBINATIONS);
}
// Step 8: Predict thresholds and signals
function predictThresholdsAndSignals() {
for (int i = 0; i < COMBINATIONS; i++) {
Threshold1[i] = Predict(NN1, ReducedMatrix1[i]);
Threshold2[i] = Predict(NN2, ReducedMatrix2[i]);
// Meta Neural Network combines predictions
MetaFeatures[i] = [Threshold1[i], Threshold2[i]];
FinalSignals[i] = Predict(MetaNN, MetaFeatures[i]);
}
}
// Step 9: Execute trades
function executeTrades() {
for (int i = 0; i < COMBINATIONS; i++) {
int pair1 = combinationIndex[i][0];
int pair2 = combinationIndex[i][1];
// Example trade logic based on meta signal
if (FinalSignals[i] > 0.5) {
enterLong(CurrencyPairs[pair1]);
enterShort(CurrencyPairs[pair2]);
} else if (FinalSignals[i] < -0.5) {
enterShort(CurrencyPairs[pair1]);
enterLong(CurrencyPairs[pair2]);
}
}
}
// Main function
function run() {
set(PLOTNOW);
// Step 1: Calculate volatilities
calculateVolatilities();
// Step 2: Generate pair combinations
generateCombinations();
// Step 3: Calculate volatility ratios
calculateVolatilityRatios();
// Step 4: Compute kernel matrices
calculateKernelMatrices(0.5, 0.5); // Example sigma values
// Step 5: Perform Kernel PCA
vars eigenvalues1, eigenvectors1;
vars eigenvalues2, eigenvectors2;
performKernelPCA(kernelMatrix1, eigenvalues1, eigenvectors1);
performKernelPCA(kernelMatrix2, eigenvalues2, eigenvectors2);
// Step 6: Reduce kernel data
reduceKernelData(kernelMatrix1, eigenvectors1, ReducedMatrix1, 3); // Top 3 components
reduceKernelData(kernelMatrix2, eigenvectors2, ReducedMatrix2, 3);
// Step 7: Train neural networks
trainNeuralNetworks();
// Step 8: Predict thresholds and signals
predictThresholdsAndSignals();
// Step 9: Execute trades
executeTrades();
}