Problem: Recursive Kernel PCA with GNN for Profitability Optimization
You are tasked to design a trading strategy that integrates two Kernel PCAs (for volatility and profitability relationships) with a Graph Neural Network (GNN). The strategy dynamically updates node embeddings and kernel matrices to extract dominant patterns and optimize trading signals for a portfolio of ð‘›=28 currency pairs.
The goal is to maximize profitability Î , subject to market dynamics and constraints.
Step 1: Graph Construction
Graph Definition: Let the currency pairs be represented as a graph ðº=(ð‘‰,ð¸), where:
ð‘‰: Nodes, ð‘£ð‘– , represent currency pairs.
ð¸: Edges represent relationships between pairs.
Node Features: Each node ð‘£ð‘– is assigned a feature vector ð‘¥ð‘–, defined as:
x_i = [σ_i(t), R_i(t), M_i(t), Ï_{i,j}(t)]
where:
ðœŽð‘–(ð‘¡): Volatility of ð¶ð‘–,
ð‘…ð‘–(ð‘¡): Return of ð¶ð‘–,ð‘€ð‘–(ð‘¡): Momentum of ð¶ð‘–,
ðœŒð‘–,ð‘—(ð‘¡): Correlation between ð¶ð‘– and ð¶ð‘—.
Edge Weights: The weighted adjacency matrix ð´ is given by:
A[i][j] = exp(-||x_i - x_j||^2 / (2 * σ^2))
where 𜎠is a kernel width parameter.
Step 2: Kernel Matrices
Volatility Kernel
ð¾ð‘‰ : Construct ð¾ð‘‰K using a Gaussian kernel:
K_V[i][j] = exp(- (V_{i,j}(t) - V_{k,l}(t))^2 / (2 * σ_V^2))
where ð‘‰ð‘–,ð‘—(ð‘¡)=∣ðœŽð‘–(ð‘¡)−ðœŽð‘—(ð‘¡)∣ is the volatility spread.
Profitability Kernel ð¾Î ​ : Construct ð¾Î as:
K_Π[i][j] = exp(- (Π_{i,j}(t) - Π_{k,l}(t))^2 / (2 * σ_Π^2))
where Î ð‘–,ð‘—(ð‘¡)=∣ð‘…ð‘–(ð‘¡)−ð‘…ð‘—(ð‘¡)∣Πi,j​(t) is the profitability difference.
Eigenvalue Decomposition: Decompose ð¾ð‘‰â€‹ and ð¾Î into ðœ†ð‘˜ (eigenvalues) and ð‘£ð‘˜ (eigenvectors):
K = Σ_{k=1}^m λ_k * (v_k ⊗ v_k)
where 𑚠is the number of principal components.
Step 3: GNN Embedding Propagation
Message Passing: For each edge (ð‘–,ð‘—), compute the message ð‘šð‘–ð‘—​:
m_{ij} = A[i][j] * (W * h_j^{(t)})
where 𑊠is a weight matrix.
Node Updates: Update node embeddings ℎð‘–(ð‘¡+1) using:
h_i^{(t+1)} = ReLU(W * Σ_{j∈N(i)} m_{ij} + b)
Recursive Feedback: Use updated embeddings ℎð‘–(ð‘¡+1) to refine the kernel matrices:
K_V[i][j] = f(h_i^{(t+1)}, h_j^{(t+1)})
K_Î [i][j] = g(h_i^{(t+1)}, h_j^{(t+1)})
Step 4: Neural Networks
Threshold Prediction: Train two neural networks:
ð‘ð‘1 : Predicts volatility threshold Θð‘‰(ð‘¡):
Θ_V(t) = NN_1(R_{V,i}(t))
ð‘ð‘2 : Predicts profitability threshold ΘΠ(ð‘¡):
Θ_Π(t) = NN_2(R_{Π,i}(t))
Meta Neural Network: Combine Θð‘‰(ð‘¡) and ΘΠ(ð‘¡) using a meta network:
Θ_{final}(t) = MetaNN(Θ_V(t), Θ_Π(t))
Step 5: Trade Execution
Signal Calculation: Compute the normalized trade signal ð‘†ð‘–,ð‘—(ð‘¡):
S_{i,j}(t) = R_{V,i}(t) / sqrt(Σ_{k=1}^n R_{V,k}(t)^2)
Execution Criteria: Execute a trade if:
|S_{i,j}(t)| > Θ_{final}(t)
Constraints
Variance Explained: Select the top 𑚠components such that:
Σ_{k=1}^m λ_k / Σ_{k=1}^n λ_k ≥ 0.90
Dynamic Kernel Widths: Update kernel widths dynamically:
σ_V(t) = σ_V(0) * (1 + κ * StdDev(V(t)))
σ_Π(t) = σ_Π(0) * (1 + κ * StdDev(Π(t)))
Feedback Convergence: Ensure feedback loops converge within
ð‘¡ð‘šð‘Žð‘¥=10 iterations:
max(|K_V^{(t+1)} - K_V^{(t)}|, |K_Π^{(t+1)} - K_Π^{(t)}|) < ε
Goal Maximize cumulative profitability Î :
Π= Σ_{t=1}^T Σ_{i,j} (S_{i,j}(t) * Trade_{i,j}(t))
subject to constraints on variance explained, kernel widths, and feedback convergence.
#define PAIRS 28
#define COMBINATIONS 378
string CurrencyPairs[PAIRS] = {
"EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
"AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
"EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
"USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};
vars volatilities[PAIRS]; // Volatility for each pair
vars profitability[COMBINATIONS]; // Profitability for each pair combination
vars adjacencyMatrix[PAIRS][PAIRS]; // GNN adjacency matrix
vars nodeEmbeddings[PAIRS][5]; // Node embeddings from GNN
vars kernelMatrix1[PAIRS][PAIRS]; // Kernel matrix for PCA-1 (volatility)
vars kernelMatrix2[PAIRS][PAIRS]; // Kernel matrix for PCA-2 (profitability)
vars ReducedMatrix1[PAIRS][PAIRS]; // Reduced components from PCA-1
vars ReducedMatrix2[PAIRS][PAIRS]; // Reduced components from PCA-2
vars Threshold1[PAIRS]; // Thresholds from NN-1
vars Threshold2[PAIRS]; // Thresholds from NN-2
vars MetaFeatures[PAIRS]; // Meta-features for MetaNN
vars FinalSignals[PAIRS]; // Final trade signals
int NN1, NN2, MetaNN; // Neural network handles
int lookback = 50; // Lookback period
// Step 1: Calculate volatility and profitability
function calculateMetrics() {
for (int i = 0; i < PAIRS; i++) {
volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
}
for (int k = 0; k < COMBINATIONS; k++) {
int i = k / PAIRS;
int j = k % PAIRS;
profitability[k] = abs(priceClose(CurrencyPairs[i]) - priceClose(CurrencyPairs[j]));
}
}
// Step 2: Construct adjacency matrix
function constructAdjacencyMatrix() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
if (i != j) {
adjacencyMatrix[i][j] = exp(-pow(volatilities[i] - volatilities[j], 2)); // Gaussian kernel
} else {
adjacencyMatrix[i][j] = 0;
}
}
}
}
// Step 3: Propagate GNN embeddings
function propagateEmbeddings() {
vars newEmbeddings[PAIRS][5];
for (int t = 0; t < 3; t++) { // 3 propagation steps
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < 5; k++) {
newEmbeddings[i][k] = 0;
for (int j = 0; j < PAIRS; j++) {
newEmbeddings[i][k] += adjacencyMatrix[i][j] * nodeEmbeddings[j][k];
}
newEmbeddings[i][k] = ReLU(newEmbeddings[i][k]);
}
}
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < 5; k++) {
nodeEmbeddings[i][k] = newEmbeddings[i][k];
}
}
}
}
// Step 4: Update kernel matrices using GNN embeddings
function updateKernelMatrices() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
kernelMatrix1[i][j] = exp(-dotProduct(nodeEmbeddings[i], nodeEmbeddings[j]) / 2); // Volatility kernel
kernelMatrix2[i][j] = exp(-profitability[i * PAIRS + j] / 2); // Profitability kernel
}
}
}
// Step 5: Perform Kernel PCA
function performKernelPCA(vars kernelMatrix[PAIRS][PAIRS], vars ReducedMatrix[PAIRS][PAIRS]) {
vars eigenvalues, eigenvectors;
eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < 3; j++) { // Top 3 components
ReducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
}
}
}
// Step 6: Train neural networks
function trainNeuralNetworks() {
// NN-1: Thresholds from PCA-1
LayerPerceptron(10);
LayerNormalize();
LayerPerceptron(1);
NN1 = Train("NN1", ReducedMatrix1, Threshold1, PAIRS);
// NN-2: Thresholds from PCA-2
LayerPerceptron(10);
LayerNormalize();
LayerPerceptron(1);
NN2 = Train("NN2", ReducedMatrix2, Threshold2, PAIRS);
// Meta Neural Network
LayerPerceptron(5);
LayerNormalize();
LayerPerceptron(1);
MetaNN = Train("MetaNN", [Threshold1, Threshold2], FinalSignals, PAIRS);
}
// Step 7: Execute trades
function executeTrades() {
for (int i = 0; i < PAIRS; i++) {
if (FinalSignals[i] > 0.5) {
enterLong(CurrencyPairs[i]);
} else if (FinalSignals[i] < -0.5) {
enterShort(CurrencyPairs[i]);
}
}
}
// Main function
function run() {
set(PLOTNOW);
// Step 1: Calculate metrics
calculateMetrics();
// Step 2: Construct adjacency matrix
constructAdjacencyMatrix();
// Step 3: Propagate embeddings
propagateEmbeddings();
// Step 4: Update kernel matrices
updateKernelMatrices();
// Step 5: Perform Kernel PCA
performKernelPCA(kernelMatrix1, ReducedMatrix1);
performKernelPCA(kernelMatrix2, ReducedMatrix2);
// Step 6: Train neural networks
trainNeuralNetworks();
// Step 7: Execute trades
executeTrades();
}