You are tasked with designing an advanced algorithmic trading strategy that integrates Kernel PCA and Graph Neural Networks (GNNs) to uncover hidden trading opportunities in a highly interconnected financial system of 𝑁=28 currency pairs. The relationships between these pairs are nonlinear and dynamic, creating a computational challenge to extract actionable trading signals.

The Problem
1. Volatility Web Each currency pair 𝐶𝑖 has a volatility 𝑉𝑖(𝑡) at time 𝑡, evolving as:

Vᵢ(t) = αᵢ ⋅ sin((π / 2) ⋅ Vⱼ(t-1)) + βᵢ ⋅ cos((π / 3) ⋅ Vₖ(t-2)) + γᵢ

Where:

𝑗≠𝑘≠𝑖 and 𝑗,𝑘∈[1,28] j,k∈[1,28],𝛼𝑖,𝛽𝑖,𝛾𝑖 : Randomly initialized coefficients influenced by historical price movements,
𝑡: Discrete time steps.

2. Kernel Transformation
The relationships between currency pairs are represented using a Gaussian kernel matrix
𝐾(𝑡), defined as:

Kᵢⱼ(t) = exp(-((Vᵢ(t) - Vⱼ(t))²) / (2 ⋅ σ²))

Where:

𝐾𝑖𝑗(𝑡): Similarity between volatilities
𝑉𝑖 and 𝑉𝑗, 𝜎: Kernel bandwidth, dynamically adjusted based on volatility clustering:

σ(t) = σ₀ ⋅ (1 + κ ⋅ StdDev(V(t)))

3. Enhanced PCA Extract principal components from 𝐾(𝑡) using Kernel PCA:

Eigenvalue Decomposition:

K(t) = V(t) ⋅ Λ(t) ⋅ V(t)^T

Where:

Λ(𝑡): Diagonal matrix of eigenvalues
𝜆𝑘(𝑡),𝑉(𝑡): Matrix of eigenvectors 𝑣𝑘(𝑡).

Projection: Compute the PCA-reduced features 𝑍𝑖(𝑡) for each currency pair:

Zᵢ(t) = [⟨Kᵢ(t), v₁⟩, ⟨Kᵢ(t), v₂⟩, ⟨Kᵢ(t), v₃⟩]

Where
𝑍𝑖(𝑡)∈R3 are the top-3 principal components.

4. Graph Construction
Construct 28 graphs, one for each GNN, using PCA-reduced features
𝑍𝑖(𝑡) :

Adjacency Matrices:

Aᵢⱼⁿ(t) = exp(-||Zᵢ(t) - Zⱼ(t)||² / (2 ⋅ σ²))

Where
𝐴𝑖𝑗𝑛(𝑡) is the weight of the edge between
𝐶𝑖 and 𝐶𝑗 in the 𝑛𝑡ℎ graph.

Normalization: Normalize 𝐴𝑖𝑗𝑛(𝑡) row-wise:

Aᵢⱼⁿ(t) = Aᵢⱼⁿ(t) / ∑ⱼ Aᵢⱼⁿ(t)

5. GNN Refinement Refine
𝑍𝑖(𝑡) using a 2-layer Graph Neural Network:

Initialization:

Hᵢⁿ(0)(t) = Zᵢ(t)

Propagation: Update features at each layer 𝑙:

Hᵢⁿ(l+1)(t) = ReLU(∑ⱼ Aᵢⱼⁿ(t) ⋅ Hⱼⁿ(l)(t) ⋅ Wⁿ(l))

Where:

𝑊𝑛(𝑙): Trainable weight matrix for the 𝑛𝑡ℎ GNN.
Output: After 𝐿=2 layers, obtain the refined features:

Hᵢⁿ(L)(t)

6. Signal Generation

Generate trading signals using the first refined feature
𝐻 𝑖𝑛 (𝐿)(𝑡)[0]: Dynamic Threshold: Calculate a dynamic threshold Θ(𝑡):

Θ(t) = 𝔼[Hᵢⁿ(L)(t)[0]] + δ ⋅ StdDev(Hᵢⁿ(L)(t)[0])

Signals: Assign signals 𝑆𝑖𝑛(𝑡) for each GNN 𝑛:

Sᵢⁿ(t) ={ +1 if Hᵢⁿ(L)(t)[0] > Θ(t), -1 if Hᵢⁿ(L)(t)[0] < -Θ(t), 0 otherwise }

Final Signal Aggregation: Combine signals across all 28 GNNs:

Sᵢ(t) = Median(Sᵢⁿ(t) ∀ n ∈ [1,28])

Optimization Tasks
Parameter Optimization: Tune 𝜎0,𝜅,𝛿,𝑊𝑛(𝑙)σ 0​ ,κ,δ,W n (l) to maximize profitability.

Noise Robustness: Account for noise 𝜂𝑘(𝑡) in eigenvalues:

λₖ'(t) = λₖ(t) ⋅ (1 + ηₖ(t))

Where 𝜂𝑘(𝑡)∼𝒩(0,𝜆𝑘(𝑡)⋅𝜈)η k​ (t)∼N(0,λ k​ (t)⋅ν), and 𝜈 is a noise coefficient.

Sharpe Ratio: Maximize the Sharpe ratio:

Sharpe = Mean(Returns) / StdDev(Returns)

Puzzle Objective

Simulate 𝑉𝑖(𝑡) over 1000 ticks for all 28 currency pairs.
Construct 28 GNNs using PCA-reduced features and adjacency matrices.
Refine features through GNN propagation.
Generate trading signals based on dynamic thresholds.
Maximize cumulative returns with a Sharpe ratio above 2.0.


Code
#define PAIRS 28
#define COMPONENTS 3 // Number of principal components from PCA
#define GNN_LAYERS 2 // Number of GNN layers per GNN

string CurrencyPairs[PAIRS] = {
    "EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
    "AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
    "EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
    "USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};

// Variables
vars volatilities[PAIRS];             // Volatility for each pair
vars adjacencyMatrices[PAIRS][PAIRS][28];  // Adjacency matrices for 28 GNNs
vars pcaReducedFeatures[PAIRS][COMPONENTS]; // PCA-reduced features
vars gnnWeights[28][GNN_LAYERS][COMPONENTS][COMPONENTS]; // GNN weights for each GNN
vars gnnRefinedFeatures[PAIRS][COMPONENTS]; // Refined features from GNNs
vars kernelMatrix[PAIRS][PAIRS];      // Kernel matrix for PCA
vars eigenvalues[PAIRS];              // Eigenvalues from PCA
vars eigenvectors[PAIRS][PAIRS];      // Eigenvectors from PCA
vars reducedMatrix[PAIRS][COMPONENTS]; // Final reduced components
vars signals[PAIRS];                  // Final trading signals
int lookback = 50;
int propagationDepth = 3;             // GNN propagation depth

// Step 1: Calculate volatilities for all pairs
function calculateVolatilities() {
    for (int i = 0; i < PAIRS; i++) {
        volatilities[i] = StdDev(series(price(CurrencyPairs[i])), lookback);
    }
}

// Step 2: Construct adjacency matrices for each GNN
function constructAdjacencyMatrices(vars features[PAIRS][COMPONENTS]) {
    for (int gnn = 0; gnn < 28; gnn++) { // Each GNN has its own adjacency matrix
        for (int i = 0; i < PAIRS; i++) {
            for (int j = 0; j < PAIRS; j++) {
                double distance = 0;
                for (int k = 0; k < COMPONENTS; k++) {
                    distance += pow(features[i][k] - features[j][k], 2);
                }
                adjacencyMatrices[i][j][gnn] = exp(-distance / (2 * pow(0.5, 2))); // Gaussian kernel
            }
        }
    }
}

// Step 3: Initialize GNN weights
function initializeGNNWeights() {
    for (int gnn = 0; gnn < 28; gnn++) {
        for (int l = 0; l < GNN_LAYERS; l++) {
            for (int i = 0; i < COMPONENTS; i++) {
                for (int j = 0; j < COMPONENTS; j++) {
                    gnnWeights[gnn][l][i][j] = random() * 0.1; // Small random initialization
                }
            }
        }
    }
}

// Step 4: Propagate features through each GNN
function propagateGNN(vars features[PAIRS][COMPONENTS]) {
    vars tempFeatures[PAIRS][COMPONENTS];
    for (int gnn = 0; gnn < 28; gnn++) { // Process each GNN
        for (int t = 0; t < propagationDepth; t++) { // Propagation steps
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < COMPONENTS; k++) {
                    tempFeatures[i][k] = 0;
                    for (int j = 0; j < PAIRS; j++) {
                        for (int m = 0; m < COMPONENTS; m++) {
                            tempFeatures[i][k] += adjacencyMatrices[i][j][gnn] * features[j][m] * gnnWeights[gnn][t][m][k];
                        }
                    }
                    tempFeatures[i][k] = max(0, tempFeatures[i][k]); // ReLU activation
                }
            }
            // Update features for the next layer
            for (int i = 0; i < PAIRS; i++) {
                for (int k = 0; k < COMPONENTS; k++) {
                    features[i][k] = tempFeatures[i][k];
                }
            }
        }
    }
    // Copy the refined features
    for (int i = 0; i < PAIRS; i++) {
        for (int k = 0; k < COMPONENTS; k++) {
            gnnRefinedFeatures[i][k] = features[i][k];
        }
    }
}

// Step 5: Perform Kernel PCA
function performKernelPCA() {
    eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
    for (int i = 0; i < PAIRS; i++) {
        for (int j = 0; j < COMPONENTS; j++) { // Use top COMPONENTS
            reducedMatrix[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
        }
    }
}

// Step 6: Generate trading signals
function generateSignals() {
    double mean = 0, stddev = 0;
    for (int i = 0; i < PAIRS; i++) {
        mean += reducedMatrix[i][0];
    }
    mean /= PAIRS;
    for (int i = 0; i < PAIRS; i++) {
        stddev += pow(reducedMatrix[i][0] - mean, 2);
    }
    stddev = sqrt(stddev / PAIRS);
    double threshold = mean + 1.0 * stddev;

    for (int i = 0; i < PAIRS; i++) {
        if (reducedMatrix[i][0] > threshold) signals[i] = 1; // Buy
        else if (reducedMatrix[i][0] < -threshold) signals[i] = -1; // Sell
        else signals[i] = 0; // Hold
    }
}

// Main function
function run() {
    set(PLOTNOW);

    // Step 1: Calculate volatilities
    calculateVolatilities();

    // Step 2: Perform Kernel PCA to reduce features
    performKernelPCA();

    // Step 3: Construct adjacency matrices for GNNs
    constructAdjacencyMatrices(reducedMatrix);

    // Step 4: Initialize GNN weights
    initializeGNNWeights();

    // Step 5: Apply GNN propagation
    propagateGNN(reducedMatrix);

    // Step 6: Generate trading signals
    generateSignals();

    // Step 7: Execute trades
    for (int i = 0; i < PAIRS; i++) {
        if (signals[i] > 0) enterLong(CurrencyPairs[i]);
        else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
    }
}