The Puzzle of Currency Waves 🌊💸
Imagine you're standing at a beach and watching the waves. Each wave is like a currency pair (e.g., EUR/USD or GBP/JPY) in the financial market. Some waves are big, some are small, and they all move differently. But here’s the tricky part: these waves aren’t moving randomly—they’re connected! ðŸŒ
Now, let’s pretend you’re a wave scientist. Your job is to figure out how these waves are connected and use that information to predict which wave will get bigger or smaller next. If you do it right, you can ride the perfect wave (make a smart trade) and avoid the ones that crash! ðŸ„â€â™‚ï¸
The Finance Game 🎮
In the real world of finance, these "waves" are actually something called volatility. Volatility tells us how much the prices of currency pairs are changing. Sometimes prices jump up and down a lot (big waves), and other times they stay calm (small waves).
But here's the big mystery: what makes one wave affect another?
The Big Question ðŸ§
Let’s say we have 28 waves, one for each currency pair. If the EUR/USD wave gets bigger, does it make the GBP/JPY wave smaller? Or does it push all the waves to get bigger? Your job is to figure this out, just like a detective solving a mystery. 🕵ï¸â€â™€ï¸
To solve this puzzle, you’ll use a magical tool called Relative Volatility Spread Similarity. It helps us measure how much one wave (currency pair) is different from another. For example:
If EUR/USD is very calm and GBP/JPY is very wild, they’re very different.
If both are wild, they’re similar.
Using the Magic Glasses ðŸ”✨
To make sense of all this, we use something like magic glasses called Enhanced PCA. It’s a way to focus on the most important parts of the puzzle and ignore the boring details.
Once we have the important pieces, we send them to a group of really smart robots called Graph Neural Networks (GNNs). These robots:
Look at how all the waves are connected.
Share their findings with each other.
Give us advice on whether to buy, sell, or hold currencies.
The Secret Sauce 🥣
But we don’t stop there! We check if the robots are working well by making them talk to each other. If two robots give very different advice, we ask, “Why are you so different?†and help them refine their answers. This is called Cross-Entropy Similarity, and it makes sure all the robots are working as a team.
The Goal 🎯
The goal of this whole game is to:
Predict the best waves (currency pairs) to ride.
Make money while keeping risks low (don’t fall off your surfboard!). ðŸ„â€â™€ï¸ðŸ’°
#define PAIRS 28
#define COMPONENTS 3 // Number of PCA components
#define GNN_LAYERS 2 // Number of GNN layers
#define ACTIONS 3 // Buy, Sell, Hold
#define LOOKBACK 100 // Lookback period for volatility calculation
#define VOL_KERNEL_WIDTH 0.5 // Width for Gaussian kernel
#define SIMILARITY_ALPHA 0.1 // Smoothing factor for similarity updates
// Declare currency pairs
string CurrencyPairs[PAIRS] = {
"EURUSD", "GBPUSD", "USDJPY", "GBPJPY", "USDCAD", "EURAUD", "EURJPY",
"AUDCAD", "AUDJPY", "AUDNZD", "AUDUSD", "CADJPY", "EURCAD", "EURCHF",
"EURGBP", "EURNZD", "GBPCAD", "GBPCHF", "NZDCAD", "NZDJPY", "NZDUSD",
"USDCHF", "CHFJPY", "AUDCHF", "GBPNZD", "NZDCHF", "CADCHF", "GBPAUD"
};
// Global Variables
vars kernelMatrix[PAIRS][PAIRS]; // Kernel matrix for PCA
vars pcaReducedFeatures[PAIRS][COMPONENTS]; // PCA-reduced features for each pair
vars adjacencyMatrices[PAIRS][PAIRS]; // Adjacency matrices for GNNs
vars gnnWeights[GNN_LAYERS][COMPONENTS][COMPONENTS]; // GNN weights
vars gnnOutputs[PAIRS][ACTIONS]; // GNN probabilities for Buy/Sell/Hold
vars similarityMatrix[PAIRS][PAIRS]; // Cross-Entropy similarity matrix
vars refinedOutputs[PAIRS][ACTIONS]; // Refined GNN probabilities
vars signals[PAIRS]; // Final trading signals
// Utility Function: Calculate Rolling Volatility
function calcVolatility(string pair) {
asset(pair);
vars returns = series(log(priceClose() / priceClose(1)));
return StdDev(returns, LOOKBACK);
}
// Step 1: Compute Kernel Matrix
function computeKernelMatrix() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
vars sigma_i = series(calcVolatility(CurrencyPairs[i]));
vars sigma_j = series(calcVolatility(CurrencyPairs[j]));
vars volatilitySpread = series(abs(sigma_i[0] - sigma_j[0]));
kernelMatrix[i][j] = exp(-volatilitySpread[0]^2 / (2 * VOL_KERNEL_WIDTH^2));
}
}
}
// Step 2: Perform Enhanced PCA
function performEnhancedPCA() {
eigenDecomposition(kernelMatrix, eigenvalues, eigenvectors);
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < COMPONENTS; j++) {
pcaReducedFeatures[i][j] = dotProduct(kernelMatrix[i], eigenvectors[j]);
}
}
}
// Step 3: Initialize GNN Weights
function initializeGNNWeights() {
for (int l = 0; l < GNN_LAYERS; l++) {
for (int i = 0; i < COMPONENTS; i++) {
for (int j = 0; j < COMPONENTS; j++) {
gnnWeights[l][i][j] = random() * 0.1; // Small random initialization
}
}
}
}
// Step 4: GNN Propagation
function propagateGNN() {
vars tempFeatures[PAIRS][COMPONENTS];
for (int l = 0; l < GNN_LAYERS; l++) {
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < COMPONENTS; k++) {
tempFeatures[i][k] = 0;
for (int j = 0; j < PAIRS; j++) {
for (int m = 0; m < COMPONENTS; m++) {
tempFeatures[i][k] += adjacencyMatrices[i][j] * pcaReducedFeatures[j][m] * gnnWeights[l][m][k];
}
}
tempFeatures[i][k] = max(0, tempFeatures[i][k]); // ReLU activation
}
}
// Update PCA features for the next layer
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < COMPONENTS; k++) {
pcaReducedFeatures[i][k] = tempFeatures[i][k];
}
}
}
// Generate probabilities (Buy/Sell/Hold) based on final GNN outputs
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < ACTIONS; k++) {
gnnOutputs[i][k] = random() * 0.1; // Placeholder for GNN probability outputs
}
}
}
// Step 5: Compute Cross-Entropy Similarity
function computeCrossEntropySimilarity() {
for (int i = 0; i < PAIRS; i++) {
for (int j = 0; j < PAIRS; j++) {
similarityMatrix[i][j] = 0;
for (int k = 0; k < ACTIONS; k++) {
similarityMatrix[i][j] -= gnnOutputs[i][k] * log(gnnOutputs[j][k] + 1e-8);
}
}
}
}
// Step 6: Refine GNN Outputs Using Similarity
function refineGNNOutputs() {
for (int i = 0; i < PAIRS; i++) {
for (int k = 0; k < ACTIONS; k++) {
refinedOutputs[i][k] = 0;
double weightSum = 0;
for (int j = 0; j < PAIRS; j++) {
refinedOutputs[i][k] += similarityMatrix[i][j] * gnnOutputs[j][k];
weightSum += similarityMatrix[i][j];
}
refinedOutputs[i][k] /= (weightSum + 1e-8); // Normalize
}
}
}
// Step 7: Generate Trading Signals
function generateSignals() {
for (int i = 0; i < PAIRS; i++) {
signals[i] = refinedOutputs[i][0] - refinedOutputs[i][1]; // Buy-Sell difference
}
}
// Step 8: Execute Trades
function executeTrades() {
for (int i = 0; i < PAIRS; i++) {
if (signals[i] > 0) enterLong(CurrencyPairs[i]);
else if (signals[i] < 0) enterShort(CurrencyPairs[i]);
}
}
// Main Function
function run() {
set(PLOTNOW);
// Step 1: Compute Kernel Matrix
computeKernelMatrix();
// Step 2: Perform Enhanced PCA
performEnhancedPCA();
// Step 3: Initialize GNN weights
initializeGNNWeights();
// Step 4: Propagate GNN
propagateGNN();
// Step 5: Compute Cross-Entropy Similarity
computeCrossEntropySimilarity();
// Step 6: Refine GNN outputs
refineGNNOutputs();
// Step 7: Generate trading signals
generateSignals();
// Step 8: Execute trades
executeTrades();
}