What are “Shiller equations”?

Present-value model & variance bounds: Price equals the discounted stream of expected future payouts. Under rational expectations, the variance of price can’t exceed the variance of the discounted-cash-flow process; Shiller showed stock prices are too volatile relative to this bound (“Do Stock Prices Move Too Much…”, AER 1981).
American Economic Association

Campbell–Shiller log-linear identity: A log-linearization of the present-value model links the log dividend-price ratio to expected future returns and dividend growth, yielding testable decompositions widely used in asset-pricing.
Stern School of Business


Key PDFs (authoritative):

Shiller (1981) AER — “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?” (classic variance-bounds test).
American Economic Association

Campbell & Shiller (1988, RFS/NBER) — “The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors” (log-linear present-value relation).
Stern School of Business


Nobel Prize 2013 press release (PDF) — award to Fama, Hansen, Shiller “for their empirical analysis of asset prices.”
NobelPrize.org


Shiller’s Nobel Prize lecture (PDF): “Speculative Asset Prices.”
NobelPrize.org

Nobel “Popular Science” background (PDF): “Trendspotting in asset markets.”
NobelPrize.org


Code
// ============================================================================
// Shiller_EURUSD.c  —  Zorro / lite-C demonstration script (EUR/USD)
// ============================================================================
// GOAL
// -----
// This script illustrates two classic ideas often discussed in the
// 'variance bounds' / 'dividend–price ratio' (dp) literature:
//
//   Part A) An *illustrative* check of "excess volatility":
//           compare the variance of price P_t to a discounted-sum proxy P*_t
//           constructed from a toy 'dividend' series D_t (here: carry proxy).
//
//   Part B) A very simple *return predictability* example using the
//           dividend-price ratio dp_t := log(D_t / P_t) to predict future
//           K-day returns via a rolling univariate OLS slope.
//
// NOTES (Zorro / lite-C specifics)
// --------------------------------
// • This is a research demo; it trades with a minimal rule only to show how to
//   translate a scalar signal into actions. It is *not* a strategy.
// • Positive series index in Zorro points to the PAST. Example: X[1] is
//   the previous bar, X[K] is K bars ago; X[0] is the current bar.
// • `vars` are rolling series returned by `series(...)`; `var` is a scalar.
// • `asset("EUR/USD")` selects the EUR/USD symbol defined by your asset list.
// • `Lots` is set to 1 purely for a visible action in Part B.
//
// SAFETY / ROBUSTNESS
// -------------------
// • We clamp denominators with a small epsilon to avoid log(0) or division by 0.
// • Window sizes and horizons are explicitly checked against LookBack and Bar.
//
// VERSION
// -------
// Tested with Zorro 2.x / lite-C syntax.
// ============================================================================

function run()
{
    // ------------------------------------------------------------------------
    // SESSION / DATA SETTINGS
    // ------------------------------------------------------------------------
    BarPeriod = 1440;      // 1440 minutes = 1 day bars
    StartDate = 2010;      // start year (use your data span)
    LookBack  = 600;       // bars held in rolling series (must cover max windows)
    asset("EUR/USD");
    set(PLOTNOW);          // auto-plot series as they are produced

    // ------------------------------------------------------------------------
    // PRICE SERIES
    // ------------------------------------------------------------------------
    // P_t: close price; R1: 1-bar (1-day) log return (not used later, kept for ref)
    vars P  = series(priceClose());           // P[0]=today, P[1]=yesterday, ...
    vars R1 = series(log(P[0]/P[1]));         // ln(P_t / P_{t-1})

    // ------------------------------------------------------------------------
    // "DIVIDEND" PROXY D_t  (here: a constant carry series for demonstration)
    // ------------------------------------------------------------------------
    // In FX, a carry-like proxy could be the interest rate differential.
    // Here we just set a constant daily carry to mimic ~1.5% per annum.
    var  eps        = 1e-12;                  // small epsilon for safe divisions
    var  carryDaily = 0.015/252.;             // ? 1.5% p.a. / 252 trading days
    vars D          = series(carryDaily);     // D_t aligned with bars

    // =========================================================================
    // PART A: "Ex post" discounted-sum proxy P*_t for an excess-volatility check
    // =========================================================================
    // Construct a simple discounted sum of past D_t as a toy P*_t proxy:
    //     P*_t ? ?_{k=1..Kmax} D_{t-k} / (1+r_d)^k
    // This is ONLY an illustration, not a proper present-value model.
    int   Kmax = 126;                          // look-back horizon (~6 months)
    var   r_d  = 0.0001;                       // daily discount ? 0.01% (~2.5% p.a.)
    vars  Px   = series(0);                    // rolling proxy P*_t

    if (Bar > LookBack)
    {
        // Build discounted sum from *past* values of D (D[1]..D[Kmax])
        var sumDisc = 0;
        var disc    = 1;
        int k;
        for (k=1; k<=Kmax; k++)
        {
            disc   /= (1 + r_d);               // (1+r)^(-k)
            var Dp  = D[k];                    // D_{t-k}
            sumDisc += disc * Dp;
        }
        Px[0] = sumDisc;                       // write current P*_t proxy

        // Compare rolling variances of P and P* over a window W
        int W = 500;
        if (Bar > LookBack + Kmax + W)
        {
            // Means
            var meanP = 0, meanPx = 0;
            int i;
            for (i=0; i<W; i++) { meanP += P[i]; meanPx += Px[i]; }
            meanP  /= (var)W;
            meanPx /= (var)W;

            // Sample variances
            var varP = 0, varPx = 0;
            for (i=0; i<W; i++) {
                var a = P[i]-meanP;
                var b = Px[i]-meanPx;
                varP  += a*a;
                varPx += b*b;
            }
            varP  /= (var)(W-1);
            varPx /= (var)(W-1);

            // Plots for visual inspection
            plot("Var(P)",  varP,  NEW, 0);
            plot("Var(P*)", varPx, 0,   0);

            // Console line every ~50 bars
            if (Bar%50==0)
                printf("\n[EXCESS VOL] W=%d Var(P)=%.6g Var(P*)=%.6g ratio=%.3f",
                       W, varP, varPx, varP/(varPx+eps));
        }
    }

    // =========================================================================
    // PART B: Return predictability via the dividend-price ratio, dp_t
    // =========================================================================
    // We compute:
    //   dp_t := log(D_t / P_t)
    // and regress *past* K-day realized returns on dp over a rolling window Wreg
    // to estimate a slope 'beta'. A positive beta implies higher dp predicts
    // higher future returns (in this toy setup).
    //
    // Then we convert the instantaneous dp z-score into a small long/short
    // trade signal, clipped and scaled to the range [-0.5, +0.5] (Lev).
    int   K   = 20;                                            // horizon (~1 month)
    vars  DP  = series(log(max(eps, D[0]) / max(eps, P[0])));  // dp_t series
    vars  RK  = series(log(P[0]/P[K]));                        // realized K-day return

    int   Wreg = 500;                                          // regression window
    if (Bar > LookBack + K + Wreg)
    {
        // ----------------------------
        // Rolling univariate OLS slope
        // ----------------------------
        var sumX=0, sumY=0, sumXX=0, sumXY=0;
        int i;
        for (i=0;i<Wreg;i++){
            var x = DP[i];     // predictor
            var y = RK[i];     // response (past K-day return)
            sumX  += x;
            sumY  += y;
            sumXX += x*x;
            sumXY += x*y;
        }
        var meanX = sumX/Wreg;
        var meanY = sumY/Wreg;
        var denom = sumXX - Wreg*meanX*meanX;

        var beta = 0;                                         // OLS slope
        if (denom != 0)
            beta = (sumXY - Wreg*meanX*meanY)/denom;

        plot("beta(dp->Kret)", beta, NEW, 0);

        // ----------------------------
        // z-score of current dp_t
        // ----------------------------
        var meanDP=0, varDP=0;
        for (i=0;i<Wreg;i++) meanDP += DP[i];
        meanDP/=Wreg;
        for (i=0;i<Wreg;i++){ var d=DP[i]-meanDP; varDP += d*d; }
        varDP /= (Wreg-1);
        var sDP  = sqrt(max(eps,varDP));
        var zDP  = (DP[0]-meanDP)/sDP;

        // Clip z to avoid huge outliers
        var zClip = zDP;
        if (zClip >  2) zClip =  2;
        if (zClip < -2) zClip = -2;

        // Direction follows beta sign
        var sig = 0;
        if (beta > 0)      sig = zClip;
        else if (beta < 0) sig = -zClip;

        // ----------------------------
        // POSITION TRANSLATION
        // ----------------------------
        // Map raw signal in [-2,+2] to leverage-like knob in [-1,+1],
        // then cap at ±0.5 to keep actions small in the demo.
        var Target = sig;          // raw -2..+2
        var MaxLev = 0.5;          // clamp bound
        var Lev    = Target/2.0;   // scale to -1..+1 then cap
        if (Lev >  MaxLev) Lev =  MaxLev;
        if (Lev < -MaxLev) Lev = -MaxLev;

        // Minimal action rule:
        // if Lev is meaningfully positive => long; if negative => short; else flat.
        // We keep Lots=1 for visibility; no money management here.
        if (Lev > 0.05) { exitShort(); enterLong();  Lots = 1; }
        else if (Lev < -0.05) { exitLong(); enterShort(); Lots = 1; }
        else { exitLong(); exitShort(); }

        // Plots for monitoring
        plot("z(dp)", zDP, 0, 0);
        plot("lev",  Lev,  0, 0);
    }

    // End of run() — Zorro handles bar stepping automatically.
}

Attached Files
Shiller_EURUSD.zip (1 downloads)